TIMI flow grade

Revision as of 19:15, 22 August 2013 by Rim Halaby (talk | contribs)
Jump to navigation Jump to search

WikiDoc Resources for TIMI flow grade

Articles

Most recent articles on TIMI flow grade

Most cited articles on TIMI flow grade

Review articles on TIMI flow grade

Articles on TIMI flow grade in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on TIMI flow grade

Images of TIMI flow grade

Photos of TIMI flow grade

Podcasts & MP3s on TIMI flow grade

Videos on TIMI flow grade

Evidence Based Medicine

Cochrane Collaboration on TIMI flow grade

Bandolier on TIMI flow grade

TRIP on TIMI flow grade

Clinical Trials

Ongoing Trials on TIMI flow grade at Clinical Trials.gov

Trial results on TIMI flow grade

Clinical Trials on TIMI flow grade at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on TIMI flow grade

NICE Guidance on TIMI flow grade

NHS PRODIGY Guidance

FDA on TIMI flow grade

CDC on TIMI flow grade

Books

Books on TIMI flow grade

News

TIMI flow grade in the news

Be alerted to news on TIMI flow grade

News trends on TIMI flow grade

Commentary

Blogs on TIMI flow grade

Definitions

Definitions of TIMI flow grade

Patient Resources / Community

Patient resources on TIMI flow grade

Discussion groups on TIMI flow grade

Patient Handouts on TIMI flow grade

Directions to Hospitals Treating TIMI flow grade

Risk calculators and risk factors for TIMI flow grade

Healthcare Provider Resources

Symptoms of TIMI flow grade

Causes & Risk Factors for TIMI flow grade

Diagnostic studies for TIMI flow grade

Treatment of TIMI flow grade

Continuing Medical Education (CME)

CME Programs on TIMI flow grade

International

TIMI flow grade en Espanol

TIMI flow grade en Francais

Business

TIMI flow grade in the Marketplace

Patents on TIMI flow grade

Experimental / Informatics

List of terms related to TIMI flow grade


Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]

TIMI Flow Grade Definitions

Grade 0

No perfusion. No antegrade flow beyond the point of occlusion. [1] [2] [3]

Grade 1

Penetration without perfusion. Contrast material passes beyond the area of obstruction but fails to opacify the entire coronary bed distal to the obstruction for the duration of the cineangiographic filming sequence.[1] [2] [3]

This category is subdivided into:

  • 1.0: dye minimally leaks past the area of obstruction.
  • 1.5: dye leaks well past the area of obstruction but fails to opacify the entire coronary bed.
  • In the case of a TIMI Flow Grade 0, 1, or 1.5 there is no measurable TIMI Frame Count; therefore, DNA (Does Not Apply) is recorded on the case report form in the TIMI Frame Count field.

Grade 2

Partial perfusion. Contrast material passes across the obstruction and opacifies the coronary bed distal to the obstruction. However, the rate of entry of contrast material into the vessel distal to the obstruction or its rate of clearance from the distal bed (or both) are perceptibly slower than its flow into or clearance from comparable areas not perfused by the previously occluded vessel (i.e. opposite coronary artery or the coronary bed proximal to the obstruction).[1] [2] [3]

This category is subdivided into:

  • 2.0: TIMI 2 slow flow, dye markedly delayed in opacifying distal vasculature.
  • 2.5: TIMI 2 fast flow, dye minimally delayed in opacifying distal vasculature.

Grade 3

Complete perfusion. Antegrade flow into the bed distal to the obstruction occurs as promptly as antegrade flow into the bed proximal to the obstruction, and clearance of contrast material from the involved bed is as rapid as clearance from an uninvolved bed in the same vessel or the opposite artery.[1] [2] [3]

Clinical Importance and Evaluation

The Thrombolysis In Myocardial Infarction (TIMI) flow grade classification scheme has been widely used to assess coronary blood flow in acute coronary syndromes.[4] TFG 0 means the artery is closed; TFG 1 means that dye penetrates the stenosis but does not reach the downstream bed; TFG 2 means that flow is slow down the artery and TFG 3 means that normal flow has been restored. The association of the TFGs with clinical outcomes (including mortality) has been well documented [5] [6] [7] [8] [9] [10] [2]

The association of the TFGs with mortality must be interpreted with caution as there are several confounders:

1. The majority of TIMI grade 2 flow is observed in the left anterior descending artery (LAD) territory, whereas the majority of TIMI grade 3 flow is observed in the right coronary artery (RCA)[10]. Thus, the improved mortality observed among patients with TIMI grade 3 flow may be explained at least in part by the fact that inferior myocardial infarction (MI) location is associated with a lower mortality rate [10]

2. The clinical improvement associated with TIMI grade 3 flow may have be nonlinear. For example, greater clinical benefits may be observed if a closed artery (TFG 0/1) is opened (TFG 2) compared with the improvement that might occur if an artery with TFG 2 is converted to TFG 3 flow.

3. As more arteries with TFG 2 flow are treated with adjunctive percutaneous coronary intervention (PCI), the prognosis associated with this flow grade may improve. The fact that patients who were treated with an inferior fibrinolytic monotherapy strategy faired so well in GUSTO V may be explained in part by the fact that these patients underwent PCI more often [11] [12]. Two-year follow-up in more recent studies indicates that the survival advantage of TFG 3 flow over TFG 2 flow at 2 years may not be as great as it once was in the era before aggressive utilization of rescue and adjunctive (PCI) [3]

The TIMI Frame Count

The TIMI flow grade, while useful, has been largely supplanted by the more quantitative measure of the more quantitative TIMI frame count, which is the number of frames required for dye to traverse the length of the artery. The TIMI frame count provides prognostic information independent of the TIMI Flow Grade.

References

  1. 1.0 1.1 1.2 1.3 Gibson, CM; Ryan, K; Sparano, A; Rizzo, M; Moynihan, J; Kelley, M; Marble, SJ; Dodge, JT; Antman, EM. Methodologic drift in the assessment of TIMI grade 3 flow and its implications with respect to the reporting of angiographic trial results. Am Heart J. 1999;137:1179–1184. PMID 10347349
  2. 2.0 2.1 2.2 2.3 2.4 Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK, Braunwald E. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996 Mar 1;93(5):879-88. PMID 8598078
  3. 3.0 3.1 3.2 3.3 3.4 Gibson CM, Murphy S, Menown IB, Sequeira RF, Greene R, Van de Werf F, Schweiger MJ, Ghali M, Frey MJ, Ryan KA, Marble SJ, Giugliano RP, Antman EM, Cannon CP, Braunwald E. Determinants of coronary blood flow after thrombolytic administration. TIMI Study Group. Thrombolysis in Myocardial Infarction. J Am Coll Cardiol. 1999 Nov 1;34(5):1403-12. PMID 10551685
  4. The TIMI Study Group. The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. N Engl J Med. 1985; 312: 932–936.
  5. Simes RJ, Topol EJ, Holmes DR, et al. Link between the angiographic substudy and mortality outcomes in a large randomized trial of myocardial reperfusion: importance of early and complete infarct artery reperfusion. Circulation. 1995; 91: 1923–1928.
  6. The GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med. 1993; 329: 1615–1622.
  7. Vogt A, Von Essen R, Tebbe U, et al. Impact of early perfusion status of the infarct-related artery on short-term mortality after thrombolysis for acute myocardial infarction: retrospective analysis of four German multicenter studies. J Am Coll Cardiol. 1993; 21: 1391–1395.
  8. Karagounis L, Sorensen SG, Menlove RI, et al. Does thrombolysis in myocardial infarction TIMI perfusion grade 2 represent a mostly patent artery or a mostly occluded artery? Enzymatic and electrocardiographic evidence from the TEAM-2 study. J Am Coll Cardiol. 1992; 17: 1–10.
  9. Anderson JL, Karagounis LA, Becker LC, et al. TIMI perfusion grade 3 but not grade 2 results in improved outcome after thrombolysis for myocardial infarction: ventriculographic, enzymatic, and electrocardiographic evidence from the TEAM-3 study. Circulation. 1993; 87: 1829–1839.
  10. 10.0 10.1 10.2 Gibson CM, Cannon CP, Daley WL, et al. The TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996; 93: 879–888.
  11. The GUSTO V Investigators. Reperfusion therapy for acute myocardial infarction with fibrinolytic therapy or combination reduced fibrinolytic therapy and platelet glycoprotein IIb/IIIa inhibition: the GUSTO V randomised trial. Lancet. 2001; 357: 1905–1914.
  12. Hudson MP, Granger CB, Topol EJ, et al. Early reinfarction after fibrinolysis: experience from the global utilization of streptokinase and tissue plasminogen activator (alteplase) for occluded coronary arteries (GUSTO I) and global use of strategies to open occluded coronary arteries (GUSTO III) trials. Circulation. 2001; 104: 1229–1235.


Template:WikiDoc Sources