High density lipoprotein future or investigational therapies

Revision as of 21:11, 19 September 2013 by Ayokunle Olubaniyi (talk | contribs)
Jump to navigation Jump to search

High Density Lipoprotein Microchapters

Home

Patient information

Overview

Historical Perspective

Classification

Physiology

Pathophysiology

Causes

Low HDL
High HDL

Epidemiology and Demographics

Screening

Natural History, Complications and Prognosis

Diagnosis

HDL Laboratory Test

Treatment

Medical Therapy

Prevention

Future or Investigational Therapies

Clinical Trials

Landmark Trials

List of All Trials

Case Studies

Case #1

High density lipoprotein future or investigational therapies On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of High density lipoprotein future or investigational therapies

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on High density lipoprotein future or investigational therapies

CDC on High density lipoprotein future or investigational therapies

High density lipoprotein future or investigational therapies in the news

Blogs on High density lipoprotein future or investigational therapies

Directions to Hospitals Treating High density lipoprotein

Risk calculators and risk factors for High density lipoprotein future or investigational therapies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

The Need

The importance of increasing serum levels and functionality of HDL-C in lowering residual cardiovascular risks in patients with acute coronary syndromes cannot be over-emphasized. First of all, some recent studies reported failures of orally active medications that increase serum levels of HDL-C to potentially improve cardiovascular outcomes, such as niacin in the AIM-HIGH Trial. This have shifted the focus of researchers to other targets of HDL therapy aimed at increasing the serum levels of HDL as well as its functionality i.e., cellular cholesterol efflux and HDL-mediated reverse cholesterol transport mechanisms. Secondly, since the available oral medications elevate HDL over weeks to months, there is the need for medications which rapidly improve outcomes during acute vascular events.

Direct Infusion of Apo A-1

This methods aim at directly increasing the serum levels of HDL through the infusion of reconstituted and recombinant preparations of HDLs (rHDLs). Recombinant HDLs are made from apo A-1 derived from cellular expression systems while recombinant HDLs are apo A-1 derived from human. Both preparations have been complexed with phospholipids. The reconstituted forms are relatively cheaper and easier to produce.

ApoA-1 Milano

Some individuals in rural Italy were identified with a genetic variant of apo A-1 which conferred some protection against atherosclerosis despite the presence of very low HDL levels (10-30 mg/dl), elevated plasma LDL, and moderate hypertriglyceridemia.[1] Studies indicated that intravenous infusion recombinant apoA-I Milano (ETC-216) promotes regression of atherosclerosis lesion to a greater extent than wild type apoA-I as measured by intravascular ultrasound within 5 weeks of treatment.[2]



CSL-112

CER-001

Cholesterol Ester Transfer Protein (CETP) Inhibition

CETi-1 Vaccine

JTT-705

De-lipidated HDL Infusions

HDL Mimetics

ApoA-1 Mimetic Peptides

  • D-4F and L-4F

ATI-5261 Synthetic Peptide

Endothelial Lipase Inhibitors

LCAT Modulators

Endocannabinoid Receptor Blockers

ApoA-1 Upregulators

RVX-208

Synthetic Liver X Receptor (LXR) Agonists

Synthetic FXR Agonists

Gene Therapy

References

  1. Sirtori, CR.; Calabresi, L.; Franceschini, G.; Baldassarre, D.; Amato, M.; Johansson, J.; Salvetti, M.; Monteduro, C.; Zulli, R. (2001). "Cardiovascular status of carriers of the apolipoprotein A-I(Milano) mutant: the Limone sul Garda study". Circulation. 103 (15): 1949–54. PMID 11306522. Unknown parameter |month= ignored (help)
  2. Nissen, SE.; Tsunoda, T.; Tuzcu, EM.; Schoenhagen, P.; Cooper, CJ.; Yasin, M.; Eaton, GM.; Lauer, MA.; Sheldon, WS. (2003). "Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial". JAMA. 290 (17): 2292–300. doi:10.1001/jama.290.17.2292. PMID 14600188. Unknown parameter |month= ignored (help)


Template:WikiDoc Sources