Electrolyte

Revision as of 02:09, 9 August 2012 by WikiBot (talk | contribs) (Bot: Automated text replacement (-{{SIB}} + & -{{EJ}} + & -{{EH}} + & -{{Editor Join}} + & -{{Editor Help}} +))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]


Overview

WikiDoc Resources for Electrolyte

Articles

Most recent articles on Electrolyte

Most cited articles on Electrolyte

Review articles on Electrolyte

Articles on Electrolyte in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Electrolyte

Images of Electrolyte

Photos of Electrolyte

Podcasts & MP3s on Electrolyte

Videos on Electrolyte

Evidence Based Medicine

Cochrane Collaboration on Electrolyte

Bandolier on Electrolyte

TRIP on Electrolyte

Clinical Trials

Ongoing Trials on Electrolyte at Clinical Trials.gov

Trial results on Electrolyte

Clinical Trials on Electrolyte at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Electrolyte

NICE Guidance on Electrolyte

NHS PRODIGY Guidance

FDA on Electrolyte

CDC on Electrolyte

Books

Books on Electrolyte

News

Electrolyte in the news

Be alerted to news on Electrolyte

News trends on Electrolyte

Commentary

Blogs on Electrolyte

Definitions

Definitions of Electrolyte

Patient Resources / Community

Patient resources on Electrolyte

Discussion groups on Electrolyte

Patient Handouts on Electrolyte

Directions to Hospitals Treating Electrolyte

Risk calculators and risk factors for Electrolyte

Healthcare Provider Resources

Symptoms of Electrolyte

Causes & Risk Factors for Electrolyte

Diagnostic studies for Electrolyte

Treatment of Electrolyte

Continuing Medical Education (CME)

CME Programs on Electrolyte

International

Electrolyte en Espanol

Electrolyte en Francais

Business

Electrolyte in the Marketplace

Patents on Electrolyte

Experimental / Informatics

List of terms related to Electrolyte

An electrolyte is a substance containing free ions that behaves as an electrically conductive medium. Because they generally consist of ions in solution, electrolytes are also known as ionic solutions, but molten electrolytes and solid electrolytes are also possible. They are sometimes referred to in abbreviated jargon as lytes.

Principles

Electrolytes commonly exist as solutions of acids, bases or salts. Furthermore, some gases may act as electrolytes under conditions of high temperature or low pressure. Electrolyte solutions can also result from the dissolution of some biological (e.g. DNA, polypeptides) and synthetic polymers (e.g. poly(styrene sulfonate), termed polyelectrolytes, which contain multiple charged moieties.

Electrolyte solutions are normally formed when a salt is placed into a solvent such as water and the individual components dissociate due to the thermodynamic interactions between solvent and solute molecules, in a process called solvation. For example, when table salt, NaCl, is placed in water, the following occurs:

NaCl(s) → Na+ + Cl

In simple terms, the electrolyte is a material that dissolves in water to give a solution that conducts an electric current.

An electrolyte in a solution may be described as concentrated if it has a high concentration of ions, or dilute if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of the solute does not dissociate, the electrolyte is weak. The properties of electrolytes may be exploited using electrolysis to extract constituent elements and compounds contained within the solution.

Physiological importance

In physiology, the primary ions of electrolytes are sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl-), phosphate (PO43-), and hydrogen carbonate (HCO3-). The electric charge symbols of plus (+) and minus (-) indicate that the substance in question is ionic in nature and has an imbalanced distribution of electrons. This is the result of chemical dissociation.

All higher lifeforms require a subtle and complex electrolyte balance between the intracellular and extracellular milieu. In particular, the maintenance of precise osmotic gradients of electrolytes is important. Such gradients affect and regulate the hydration of the body, blood pH, and are critical for nerve and muscle function.

Both muscle tissue and neurons are considered electric tissues of the body. Muscles and neurons are activated by electrolyte activity between the extracellular fluid or interstitial fluid, and intracellular fluid. Electrolytes may enter or leave the cell membrane through specialized protein structures embedded in the plasma membrane called ion channels. For example, muscle contraction is dependent upon the presence of calcium (Ca2+), sodium (Na+), and potassium (K+). Without sufficient levels of these key electrolytes, muscle weakness or severe muscle contractions may occur.

Electrolyte balance is maintained by oral, or in emergencies, intravenous (IV) intake of electrolyte-containing substances, and is regulated by hormones, generally with the kidneys flushing out excess levels. In humans, electrolyte homeostasis is regulated by hormones such as antidiuretic hormone, aldosterone and parathyroid hormone. Serious electrolyte disturbances, such as dehydration and overhydration, may lead to cardiac and neurological complications and, unless they are rapidly resolved, will result in a medical emergency.

Measurement

Measurement of electrolytes is a commonly performed diagnostic procedure, performed via blood testing with ion selective electrodes or urinalysis by medical technologists. The interpretation of these values is somewhat meaningless without analysis of the clinical history and is often impossible without parallel measurement of renal function. Electrolytes measured most often are sodium and potassium. Chloride levels are rarely measured except for arterial blood gas interpretation since they are inherently linked to sodium levels. One important test conducted on urine is the specific gravity test to determine the occurrence of electrolyte imbalance.

Sports drinks

Electrolytes are commonly found in sports drinks. In oral rehydration therapy, electrolyte drinks containing sodium and potassium salts replenish the body's water and electrolyte levels after dehydration caused by exercise, diaphoresis, diarrhea, vomiting or starvation. Giving pure water to such a person is not the best way to restore fluid levels because it dilutes the salts inside the body's cells and interferes with their chemical functions. This can lead to water intoxication.

Sports drinks such as Gatorade, Powerade, or Lucozade are electrolyte drinks with large amounts of added carbohydrates, such as glucose, to provide energy. The drinks commonly sold to the public are isotonic (with osmolality close to that of blood), with hypotonic (with a lower osmolality) and hypertonic (with a higher osmolality) varieties available to athletes, depending on their nutritional needs.[3]

It is unnecessary to replace losses of sodium, potassium and other electrolytes during exercise since it is unlikely that a significant depletion the body's stores of these minerals will occur during normal training. However, in extreme exercising conditions over 5 or 6 hours (an Ironman or ultramarathon, for example) the consumption of a complex sports drink with electrolytes is recommended. Athletes who do not consume electrolytes under these conditions risk overhydration (or hyponatremia). [4]

Because sports drinks typically contain very high levels of sugar, they are not recommended for regular use by children. Rather, specially-formulated pediatric electrolyte solutions are recommended. Sports drinks are also not appropriate for replacing the fluid lost during diarrhea. The role of sports drinks is to inhibit electrolyte loss but are insufficient to restore balance once it occurs. Medicinal rehydration sachets and drinks are available to replace the key electrolyte ions lost. Dentists recommend that regular consumers of sports drinks observe precautions against tooth decay.

Electrolyte and sports drinks can be home-made by using the correct proportions of sugar, salt and water. [5]

Electrochemistry

When two electrodes are placed in an electrolyte and a voltage is applied, the electrolyte will conduct electricity. Lone electrons normally cannot pass through the electrolyte; instead, a chemical reaction occurs at the cathode consuming electrons from the cathode, and another reaction occurs at the anode producing electrons to be taken up by the anode. As a result, a negative charge cloud develops in the electrolyte around the cathode, and a positive charge develops around the anode. The ions in the electrolyte move to neutralize these charges so that the reactions can continue and the electrons can keep flowing.

For example, in a dilute solution of ordinary salt (sodium chloride, NaCl) in water, the cathode reaction will be

2H2O + 2e → 2OH + H2

and hydrogen gas will bubble up; the anode reaction is

2H2O → O2 + 4H+ + 4e

and oxygen gas will be liberated. The positively charged sodium ions Na+ will move towards the cathode neutralizing the negative charge of OH there, and the negatively charged chlorine ions Cl will move towards the anode neutralizing the positive charge of H+ there. Without the ions from the electrolyte, the charges around the electrode would slow down continued electron flow; diffusion of H+ and OH through water to the other electrode takes longer than movement of the much more prevalent salt ions.

In other systems, the electrode reactions can involve the metals of the electrodes as well as the ions of the electrolyte.

Electrolytic conductors are used in electronic devices where the chemical reaction at a metal/electrolyte interface yields useful effects.

  • In batteries, two metals with different electron affinities are used as electrodes; electrons flow from one electrode to the other outside of the battery, while inside the battery the circuit is closed by the electrolyte's ions. Here the electrode reactions slowly use up the chemical energy stored in the electrolyte.
  • In some fuel cells, a solid electrolyte or proton conductor connects the plates electrically while keeping the hydrogen and oxygen fuel gases separated.
  • In electroplating tanks, the electrolyte simultaneously deposits metal onto the object to be plated, and electrically connects that object in the circuit.
  • In operation-hours gauges, two thin columns of mercury are separated by a small electrolyte-filled gap, and, as charge is passed through the device, the metal dissolves on one side and plates out on the other, causing the visible gap to slowly move along.
  • In electrolytic capacitors the chemical effect is used to produce an extremely thin 'dielectric' or insulating coating, while the electrolyte layer behaves as one capacitor plate.
  • In some hygrometers the humidity of air is sensed by measuring the conductivity of a nearly dry electrolyte.
  • Hot, softened glass is an electrolytic conductor, and some glass manufacturers keep the glass molten by passing a large electric current through it.

See also

External links

bg:Електролит ca:Electròlit cs:Elektrolyt da:Elektrolyt de:Elektrolyt et:Elektrolüüt eo:Elektrolito ko:전해질 hr:Elektrolit io:Elektrolito id:Elektrolit it:Elettrolita lv:Elektrolīts hu:Elektrolit ms:Elektrolit nl:Elektrolyt no:Elektrolytt sk:Elektrolyt sl:Elektrolit sr:Електролит fi:Elektrolyytti sv:Elektrolyt th:อิเล็กโทรไลต์ uk:Електроліти


Template:WikiDoc Sources