D-dimer diagnostic role in thromboembolism
D-Dimer Microchapters |
Clinical Correlation |
---|
Clinical Trials |
D-dimer diagnostic role in thromboembolism On the Web |
American Roentgen Ray Society Images of D-dimer diagnostic role in thromboembolism |
Risk calculators and risk factors for D-dimer diagnostic role in thromboembolism |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
D-dimer is used in the diagnosis of deep vein thrombosis and pulmonary embolism among patients with low or unlikely probability of venous thromboembolism.[1][2] While 500 ng/mL has long been considered a cut off value for abnormal D-dimer concentration, recent studies suggest the use of an age adjusted cut-off concentration of D-dimer. The age adjusted cut-off value of D-dimer is 500 ng/mL for subjects whose age is less than 50 years, and the age multiplied by 10 for subjects older than 50 years.[3][4][5]
D-dimer and Thromboembolism
Abnormal Levels
- Plasma D-dimer levels > 500 ng/mL are abnormal.[6]
- However, the use of the cut off value 500 ng/mL for abnormal D-dimer limits the diagnostic role of D-dimer in the elderly, among whom D-dimer increases with age in the absence of any ongoing venous thromboemoblism process. In a metanalysis of 5 cohort studies of 2818 subjects with low clinical probability of DVT, the use of an age adjusted cut-off value of D-dimer increases the number of subjects in whom DVT can be excluded.[3] A metaanalysis of 13 cohorts of 12,497 patients with a low probability of venous thromboembolism revealed that the use of an age adjusted cut point for the D-dimer concentration increases the specificity of this test without altering its sensitivity.[4]
- According to a multicenter, multinational prospective study of 3346 subjects presenting to the emergency department for suspicion of pulmonary embolism, the use of a fixed D-dimer cut-off value is compared to an age adjusted D-dimer cut-off value. The use of the age adjusted cut-off value in patients with low clinical probability of pulmonary embolism is associated with an increased number of patients in whom pulmonary embolism is excluded with a decreased likelihood of the occurrence of subsequent venous thromboembolism episodes.[5]
- The age adjusted cut off value of D-dimer is the following:
Sensitivity and Specificity
Sensitivity
ELISA (p=0.020), quantitative rapid ELISA (p=0.016) and semi-quantitative ELISA (p=0.047) are shown to be statistically more sensitive for detecting VTE thanwhole-blood agglutination.[6]
Specificity
Qualitative rapid ELISA has shown to be statistically more specific for detecting VTE than to ELISA (p=0.004), quantitative rapid ELISA (p=0.002), semi-quantitative rapid ELISA (p=0.001), quantitative (p=0.005) and semi-quantitative latex agglutination assays (p=0.019).[6]
Method | Sensitivity (95% CI) | Specificity (95% CI) | Positive Likelihood Ratio (95% CI) | Negative Likelihood Ratio (95% CI) | Time to obtain Results |
---|---|---|---|---|---|
Enzyme-linked immunosorbent assay (ELISA) | 0.95 (0.85 to 1.00) | NS | NS | 0.13 (0.03 to 0.58) | ≥ 8 hours |
Quantitative rapid ELISA | 0.95 (0.83 to 1.00) | NS | NS | 0.13 (0.02 to 0.84) | 30 mins |
Semi-Quantitative rapid ELISA | 0.93 (0.79 to 1.00) | NS | NS | 0.20 (0.04 to 0.96) | 10 mins |
Qualitative rapid ELISA | NS | 0.68 (0.50 to 0.87) | NS | 0.11 (0.01 to 0.93) | 10 mins |
Quantitative Latex Agglutination | NS | NS | NS | NS | 10-15 mins |
Semi-quantitative Latex Agglutination | NS | NS | NS | 0.17 (0.04 to 0.78) | 5 mins |
Whole-Blood Agglutination | NS | 0.74 (0.60 to 0.88) | NS | NS | 2 mins |
Hemodynamically Stable Patients
Incidence of Thromboembolic Events in Hemodynamically Stable Patients
Condition | Incidence of thromboembolic event (%) |
---|---|
Patients not receiving anticoagulation with negative CT findings. | 1.5%[7][8] |
Patients with a high d-dimer level | 1.5% |
Patients with a normal d-dimer level | 0.5%[7] |
- Multidetector CT is indicated in hemodynamically stable patients with a high clinical probability of PE and/or patients with elevated plasma d-dimer levels secondary to the lack of specificity.[8][9]
- In patients with low-to-moderate suspicion of PE, a normal D-dimer level is considered sufficient to exclude the possibility of pulmonary embolism.[10][6][11]
Flowchart Summarizing the Role of D-dimer in the Diagnosis of PE
Patients with suspicion of pulmonary embolism | |||||||||||||||||||||||||
Clinically low or moderate | Clinically high | ||||||||||||||||||||||||
D-Dimer positive | D-dimer negative | ||||||||||||||||||||||||
No treatment | Further tests | Further tests | |||||||||||||||||||||||
A new D-Dimer (DDMR) analyzer has shown to be more accurate in excluding patients with a low clinical pre-test probability.[12]
ESC 2008 Guideline Recommendations [13]
Suspected Non High-risk PE Patients (DO NOT EDIT)[13]
Class I |
"1. Plasma D-dimer measurement is recommended in emergency department patients to reduce the need for unnecessary imaging and irradiation, preferably with the use of a highly sensitive assay. (Level of Evidence: A) " |
Low Clinical Probability (DO NOT EDIT)[13]
Class I |
"1. Normal D-dimer level using either a highly or moderately sensitive assay excludes pulmonary embolism. (Level of Evidence: A) " |
Intermediate Clinical Probability (DO NOT EDIT)[13]
Class I |
"1. Normal D-dimer level using a highly sensitive assay excludes pulmonary embolism. (Level of Evidence: A) " |
Class IIa |
"1. Further testing should be considered if D-dimer level is normal when using a less sensitive assay. (Level of Evidence: B) " |
High Clinical Probability (DO NOT EDIT)[13]
Class III |
"1. D-dimer measurement is not recommended in high clinical probability patients as a normal result does not safely exclude pulmonary embolism even when using a highly sensitive assay. (Level of Evidence: C) " |
References
- ↑ Wells PS, Owen C, Doucette S, Fergusson D, Tran H (2006). "Does this patient have deep vein thrombosis?". JAMA. 295 (2): 199–207. doi:10.1001/jama.295.2.199. PMID 16403932. Review in: Evid Based Med. 2006 Aug;11(4):119 Review in: ACP J Club. 2006 Jul-Aug;145(1):24
- ↑ Wells PS, Anderson DR, Rodger M, Stiell I, Dreyer JF, Barnes D; et al. (2001). "Excluding pulmonary embolism at the bedside without diagnostic imaging: management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d-dimer". Ann Intern Med. 135 (2): 98–107. PMID 11453709.
- ↑ 3.0 3.1 3.2 Douma RA, Tan M, Schutgens RE, Bates SM, Perrier A, Legnani C; et al. (2012). "Using an age-dependent D-dimer cut-off value increases the number of older patients in whom deep vein thrombosis can be safely excluded". Haematologica. 97 (10): 1507–13. doi:10.3324/haematol.2011.060657. PMC 3487551. PMID 22511491.
- ↑ 4.0 4.1 4.2 Schouten HJ, Geersing GJ, Koek HL, Zuithoff NP, Janssen KJ, Douma RA; et al. (2013). "Diagnostic accuracy of conventional or age adjusted D-dimer cut-off values in older patients with suspected venous thromboembolism: systematic review and meta-analysis". BMJ. 346: f2492. doi:10.1136/bmj.f2492. PMC 3643284. PMID 23645857.
- ↑ 5.0 5.1 5.2 Righini M, Van Es J, Den Exter PL, et al. Age-Adjusted D-Dimer Cutoff Levels to Rule Out Pulmonary Embolism: The ADJUST-PE Study. JAMA. 2014;311(11):1117-1124. doi:10.1001/jama.2014.2135.
- ↑ 6.0 6.1 6.2 6.3 Stein PD, Hull RD, Patel KC, Olson RE, Ghali WA, Brant R, Biel RK, Bharadia V, Kalra NK (2004). "D-dimer for the exclusion of acute venous thrombosis and pulmonary embolism: a systematic review". Annals of Internal Medicine. 140 (8): 589–602. PMID 15096330. Unknown parameter
|month=
ignored (help);|access-date=
requires|url=
(help) - ↑ 7.0 7.1 Perrier A, Roy PM, Sanchez O, Le Gal G, Meyer G, Gourdier AL; et al. (2005). "Multidetector-row computed tomography in suspected pulmonary embolism". N Engl J Med. 352 (17): 1760–8. doi:10.1056/NEJMoa042905. PMID 15858185. in: J Fam Pract. 2005 Aug;54(8):653, 657
- ↑ 8.0 8.1 van Belle A, Büller HR, Huisman MV, Huisman PM, Kaasjager K, Kamphuisen PW; et al. (2006). "Effectiveness of managing suspected pulmonary embolism using an algorithm combining clinical probability, D-dimer testing, and computed tomography". JAMA. 295 (2): 172–9. doi:10.1001/jama.295.2.172. PMID 16403929.
- ↑ Gupta RT, Kakarla RK, Kirshenbaum KJ, Tapson VF (2009). "D-dimers and efficacy of clinical risk estimation algorithms: sensitivity in evaluation of acute pulmonary embolism". AJR Am J Roentgenol. 193 (2): 425–30. doi:10.2214/AJR.08.2186. PMID 19620439.
- ↑ Bounameaux H, de Moerloose P, Perrier A, Reber G (1994). "Plasma measurement of D-dimer as diagnostic aid in suspected venous thromboembolism: an overview". Thromb. Haemost. 71 (1): 1–6. PMID 8165626.
- ↑ Bounameaux H, Perrier A, Righini M (2010). "Diagnosis of venous thromboembolism: an update". Vasc Med. 15 (5): 399–406. doi:10.1177/1358863X10378788. PMID 20926499.
- ↑ Gosselin RC, Wu JR, Kottke-Marchant K, Peetz D, Christie DJ, Muth H; et al. (2012). "Evaluation of the Stratus® CS Acute Care™ D-dimer assay (DDMR) using the Stratus® CS STAT Fluorometric Analyzer: A prospective multisite study for exclusion of pulmonary embolism and deep vein thrombosis". Thromb Res. doi:10.1016/j.thromres.2011.12.015. PMID 22245223.
- ↑ 13.0 13.1 13.2 13.3 13.4 Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, Bengel F, Brady AJ, Ferreira D, Janssens U, Klepetko W, Mayer E, Remy-Jardin M, Bassand JP (2008). "Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)". Eur. Heart J. 29 (18): 2276–315. doi:10.1093/eurheartj/ehn310. PMID 18757870. Retrieved 2011-12-07. Unknown parameter
|month=
ignored (help)
- Pages with reference errors
- CS1 maint: Multiple names: authors list
- CS1 maint: Explicit use of et al.
- CS1 maint: PMC format
- Pages with citations using unsupported parameters
- Pages using citations with accessdate and no URL
- Laboratory Test
- Chemical pathology
- Hematology
- Fibrinolytic system
- Cardiology
- Pulmonology