Cardiogenic shock epidemiology and demographics

Jump to navigation Jump to search

Cardiogenic Shock Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cardiogenic shock from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Cardiogenic shock epidemiology and demographics On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cardiogenic shock epidemiology and demographics

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cardiogenic shock epidemiology and demographics

CDC on Cardiogenic shock epidemiology and demographics

Cardiogenic shock epidemiology and demographics in the news

Blogs on Cardiogenic shock epidemiology and demographics

Directions to Hospitals Treating Cardiogenic shock

Risk calculators and risk factors for Cardiogenic shock epidemiology and demographics

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: João André Alves Silva, M.D. [2]

Overview

The incidence of cardiogenic shock among patients with acute MI is approximately 5% to 10%.[1][2] Because atherosclerosis and myocardial infarction are both more frequent among males, cardiogenic shock is more common in this gender. However, because women tend to present with acute myocardial infarction at a later age, along with the fact that they have a greater chance of having multivessel coronary artery disease when they first develop symptoms, a greater proportion of women with acute MI develop cardiogenic shock.[3]

Epidemiology and Demographics

With the improvement in the time for diagnosis and therapeutic measures offered for acute myocardial infarction, in which increasing rates of use of primary PCI have a major role, seen in recent years, the once very stable incidence of cardiogenic shock in this group of patients is finally declining.[4] Yet, cardiogenic shock is still an important complication in 5-8% of patients presenting with ST elevation myocardial infarction[5][6] and 2.5% of those with non ST elevation myocardial infarction.[7] This represents around 40000 to 50000 patients every year in the United States.[8] Despite these numbers and the high incidence of left ventricular dysfunction following myocardial infarction, cardiogenic shock due to right ventricle failure has as high mortality risk as shock following left ventricle failure.

References

  1. Goldberg RJ, Samad NA, Yarzebski J, et al. Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med. Apr 15 1999;340(15):1162-8.
  2. Hasdai D, Holmes DR, Topol EJ, et al. Frequency and clinical outcome of cardiogenic shock during acute myocardial infarction among patients receiving reteplase or alteplase. Results from GUSTO-III. Global Use of Strategies to Open Occluded Coronary Arteries. Eur Heart J. Jan 1999;20(2):128-35.
  3. Hasdai D, Califf RM, Thompson TD, et al. Predictors of cardiogenic shock after thrombolytic therapy for acute myocardial infarction. J Am Coll Cardiol. Jan 2000;35(1):136-43.
  4. Hasdai, David. (2002). Cardiogenic shock : diagnosis and treatmen. Totowa, N.J.: Humana Press. ISBN 1-58829-025-5.
  5. Fox KA, Anderson FA, Dabbous OH, Steg PG, López-Sendón J, Van de Werf F; et al. (2007). "Intervention in acute coronary syndromes: do patients undergo intervention on the basis of their risk characteristics? The Global Registry of Acute Coronary Events (GRACE)". Heart. 93 (2): 177–82. doi:10.1136/hrt.2005.084830. PMC 1861403. PMID 16757543.
  6. Babaev A, Frederick PD, Pasta DJ, Every N, Sichrovsky T, Hochman JS; et al. (2005). "Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock". JAMA. 294 (4): 448–54. doi:10.1001/jama.294.4.448. PMID 16046651.
  7. Hasdai D, Harrington RA, Hochman JS, Califf RM, Battler A, Box JW; et al. (2000). "Platelet glycoprotein IIb/IIIa blockade and outcome of cardiogenic shock complicating acute coronary syndromes without persistent ST-segment elevation". J Am Coll Cardiol. 36 (3): 685–92. PMID 10987585.
  8. Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T; et al. (2006). "Heart disease and stroke statistics--2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee". Circulation. 113 (6): e85–151. doi:10.1161/CIRCULATIONAHA.105.171600. PMID 16407573.


Template:WikiDoc Sources