SandboxAlonso
Betaxolol |
---|
BETOPTIC® FDA Package Insert |
Indications and Usage |
Dosage and Administration |
Contraindications |
Warnings and Precautions |
Adverse Reactions |
Drug Interactions |
Use in Specific Populations |
Overdosage |
Description |
Clinical Pharmacology |
Nonclinical Toxicology |
Clinical Studies |
How Supplied/Storage and Handling |
Clinical Trials on Betaxolol |
ClinicalTrials.gov |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sheng Shi, M.D. [2]
For patient information about Betaxolol, click here
Synonyms / Brand Names: BETOPTIC®
Overview
Betaxolol (trade names Betoptic, Betoptic S, Lokren, Kerlone) is a selective beta1 receptor blocker used in the treatment of hypertension and glaucoma. Being selective for beta1 receptors, it typically has fewer systemicside effects than non-selective beta-blockers, for example, not causing bronchospasm (mediated by beta2receptors) as timolol may. Betaxolol also shows greater affininty for beta1 receptors than metoprolol. In addition to its effect on the heart, betaxolol reduces the pressure within the eye (intraocular pressure). This effect is thought to be caused by reducing the production of the liquid (which is called the aqueous humor) within the eye. The precise mechanism of this effect is not known. The reduction in intraocular pressure reduces the risk of damage to the optic nerve and loss of vision in patients with elevated intraocular pressure due to glaucoma.
Betaxolol was approved by the U.S. Food and Drug Administration (FDA) for ocular use as a 0.5% solution (Betoptic) in 1985 and as a 0.25% solution (Betoptic S) in 1989.
Category
Cardiovascular Drugs:Beta blockers
FDA Package Insert
| Indications and Usage | Dosage and Administration | Contraindications | Warnings and Precautions | Adverse Reactions | Drug Interactions | Use in Specific Populations | Overdosage | Description | Clinical Pharmacology | Nonclinical Toxicology | Clinical Studies | How Supplied/Storage and Handling
Mechanism of Action
The mechanism of action has not been definitively established. Possible factors that may be involved include: (1) decreased heart rate, (2) decreased myocardial contractility, (3) diminution of tonic sympathetic outflow to the periphery from cerebral vasomotor centers, (4) suppression of renin activity and (5) vasodilation and decreased peripheral vascular resistance.