Abciximab clinical pharmacology

Revision as of 19:41, 30 January 2014 by Gerald Chi (talk | contribs)
Jump to navigation Jump to search

Template:Abciximab Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sheng Shi, M.D. [2], Pratik Bahekar, MBBS [3]

Clinical Pharmacology

General

Abciximab binds to the intact platelet GPIIb/IIIa receptor, which is a member of the integrin family of adhesion receptors and the major platelet surface receptor involved in platelet aggregation. Abciximab inhibits platelet aggregation by preventing the binding of fibrinogen, von Willebrand factor, and other adhesive molecules to GPIIb/IIIa receptor sites on activated platelets. The mechanism of action is thought to involve steric hindrance and/or conformational effects to block access of large molecules to the receptor rather than direct interaction with the RGD (arginine-glycine-aspartic acid) binding site of GPIIb/IIIa.

Abciximab binds with similar affinity to the vitronectin receptor, also known as the αvβ3 integrin. The vitronectin receptor mediates the procoagulant properties of platelets and the proliferative properties of vascular endothelial and smooth muscle cells. In in vitro studies using a model cell line derived from melanoma cells, Abciximab blocked αvβ3-mediated effects including cell adhesion (IC50 = 0.34 μg/mL). At concentrations which, in vitro, provide > 80% GPIIb/IIIa receptor blockade, but above the in vivo therapeutic range, Abciximab more effectively blocked the burst of thrombin generation that followed platelet activation than select comparator antibodies which inhibit GPIIb/IIIa alone.

The relationship of these in vitro data to clinical efficacy is unknown.

Abciximab also binds to the activated Mac-1 receptor on monocytes and neutrophils. In in vitro studies, Abciximab and 7E3 IgG blocked Mac-1 receptor function as evidenced by inhibition of monocyte adhesion. In addition, the degree of activated Mac-1 expression on circulating leukocytes and the numbers of circulating leukocyte-platelet complexes has been shown to be reduced in patients treated with Abciximab compared to control patients. The relationship of these in vitro data to clinical efficacy is uncertain.

Pre-clinical experience

Maximal inhibition of platelet aggregation was observed when ≥ 80% of GPIIb/IIIa receptors were blocked by Abciximab. In non-human primates, Abciximab bolus doses of 0.25 mg/kg generally achieved a blockade of at least 80% of platelet receptors and fully inhibited platelet aggregation. Inhibition of platelet function was temporary following a bolus dose, but receptor blockade could be sustained at ≥ 80% by continuous intravenous infusion. The inhibitory effects of Abciximab were substantially reversed by the transfusion of platelets in monkeys. The antithrombotic efficacy of prototype antibodies [murine 7E3 Fab and F(ab´)2] and Abciximab was evaluated in dog, monkey and baboon models of coronary, carotid, and femoral artery thrombosis. Doses of the murine version of 7E3 or Abciximab sufficient to produce high-grade (≥ 80%) GPIIb/IIIa receptor blockade prevented acute thrombosis and yielded lower rates of thrombosis compared with aspirin and/or heparin.

Pharmacokinetics

Following intravenous bolus administration, free plasma concentrations of Abciximab decrease rapidly with an initial half-life of less than 10 minutes and a second phase half-life of about 30 minutes, probably related to rapid binding to the platelet GPIIb/IIIa receptors. Platelet function generally recovers over the course of 48 hours (5,6), although Abciximab remains in the circulation for 15 days or more in a platelet-bound state. Intravenous administration of a 0.25 mg/kg bolus dose of Abciximab followed by continuous infusion of 10 μg/min (or a weight-adjusted infusion of 0.125 μg/kg/min to a maximum of 10 μg/min) produces approximately constant free plasma concentrations throughout the infusion. At the termination of the infusion period, free plasma concentrations fall rapidly for approximately six hours then decline at a slower rate.

Pharmacodynamics

Intravenous administration in humans of single bolus doses of Abciximab from 0.15 mg/kg to 0.30 mg/kg produced rapid dose-dependent inhibition of platelet function as measured by ex vivo platelet aggregation in response to adenosine diphosphate (ADP) or by prolongation of bleeding time. At the two highest doses (0.25 and 0.30 mg/kg) at two hours post injection (the first time point evaluated), over 80% of the GPIIb/IIIa receptors were blocked and platelet aggregation in response to 20 μM ADP was almost abolished. The median bleeding time increased to over 30 minutes at both doses compared with a baseline value of approximately five minutes.

Intravenous administration in humans of a single bolus dose of 0.25 mg/kg followed by a continuous infusion of 10 μg/min for periods of 12 to 96 hours produced sustained high-grade GPIIb/IIIa receptor blockade (≥ 80%) and inhibition of platelet function (ex vivo platelet aggregation in response to 5 μM or 20 μM ADP less than 20% of baseline and bleeding time greater than 30 minutes) for the duration of the infusion in most patients. Similar results were obtained when a weight-adjusted infusion dose (0.125 μg/kg/min to a maximum of 10 μg/min) was used in patients weighing up to 80 kg. Results in patients who received the 0.25 mg/kg bolus followed by a 5 μg/min infusion for 24 hours showed a similar initial receptor blockade and inhibition of platelet aggregation, but the response was not maintained throughout the infusion period. The onset of Abciximab-mediated platelet inhibition following a 0.25 mg/kg bolus and 0.125 μg/kg/min infusion was rapid and platelet aggregation was reduced to less than 20% of baseline in 8 of 10 patients at 10 minutes after treatment initiation.

Low levels of GPIIb/IIIa receptor blockade are present for more than 10 days following cessation of the infusion. After discontinuation of Abciximab infusion, platelet function returns gradually to normal. Bleeding time returned to ≤ 12 minutes within 12 hours following the end of infusion in 15 of 20 patients (75%), and within 24 hours in 18 of 20 patients (90%). Ex vivo platelet aggregation in response to 5 μM ADP returned to ≥ 50% of baseline within 24 hours following the end of infusion in 11 of 32 patients (34%) and within 48 hours in 23 of 32 patients (72%). In response to 20 μM ADP, ex vivo platelet aggregation returned to ≥ 50% of baseline within 24 hours in 20 of 32 patients (62%) and within 48 hours in 28 of 32 patients (88%).[1]

References

  1. "REOPRO (ABCIXIMAB) INJECTION, SOLUTION [ELI LILLY AND COMPANY]".

Adapted from the FDA Package Insert.