Verapamil hydrochloride tablet extended release warnings

Jump to navigation Jump to search
Verapamil
CALAN tablet® FDA Package Insert
Indications and Usage
Dosage and Administration
Dosage Forms and Strengths
Contraindications
Warnings and Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Overdosage
Description
Clinical Pharmacology
Nonclinical Toxicology
Clinical Studies
How Supplied/Storage and Handling
Patient Counseling Information
Labels and Packages
CALAN SR tablet extended release® FDA Package Insert
Indications and Usage
Dosage and Administration
Dosage Forms and Strengths
Contraindications
Warnings
Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Overdosage
Description
Clinical Pharmacology
Nonclinical Toxicology
How Supplied/Storage and Handling
Labels and Packages
VERAPAMIL HYDROCHLORIDE injection® FDA Package Insert
Indications and Usage
Dosage and Administration
Dosage Forms and Strengths
Contraindications
Warnings
Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Overdosage
Description
Clinical Pharmacology
Nonclinical Toxicology
How Supplied/Storage and Handling
Patient Counseling Information
Labels and Packages
Clinical Trials on Verapamil
ClinicalTrials.gov

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Abdurahman Khalil, M.D. [2]

WARNINGS

Heart failure

Verapamil has a negative inotropic effect, which in most patients is compensated by its afterload reduction (decreased systemic vascular resistance) properties without a net impairment of ventricular performance. In clinical experience with 4,954 patients, 87 (1.8%) developed congestive heart failure or pulmonary edema.

Verapamil should be avoided in patients with severe left ventricular dysfunction (eg, ejection fraction less than 30%) or moderate to severe symptoms of cardiac failure and in patients with any degree of ventricular dysfunction if they are receiving a beta-adrenergic blocker(seePRECAUTIONS, Drug interactions). Patients with milder ventricular dysfunction should, if possible, be controlled with optimum doses of digitalis and/or diuretics before verapamil treatment. (Note interactions with digoxin under PRECAUTIONS)

Hypotension

Occasionally, the pharmacologic action of verapamil may produce a decrease in blood pressure below normal levels, which may result in dizziness or symptomatic hypotension. The incidence of hypotension observed in 4,954 patients enrolled in clinical trials was 2.5%. In hypertensive patients, decreases in blood pressure below normal are unusual. Tilt-table testing (60 degrees) was not able to induceorthostatic hypotension.

Elevated liver enzymes

Elevations of transaminases with and without concomitant elevations in alkaline phosphatase and bilirubin have been reported. Such elevations have sometimes been transient and may disappear even in the face of continued verapamil treatment. Several cases of hepatocellular injury related to verapamil have been proven by rechallenge; half of these had clinical symptoms (malaise, fever, and/or right upper quadrant pain) in addition to elevation of SGOT, SGPT, and alkaline phosphatase. Periodic monitoring of liver function in patients receiving verapamil is therefore prudent.

Accessory bypass tract (Wolff-Parkinson-White or Lown-Ganong-Levine)

Some patients with paroxysmal and/or chronic atrial fibrillation or atrial flutter and a coexisting accessory AV pathway have developed increased antegrade conduction across the accessory pathway bypassing the AV node, producing a very rapid ventricular response or ventricular fibrillation after receiving intravenous verapamil (or digitalis). Although a risk of this occurring with oral verapamil has not been established, such patients receiving oral verapamil may be at risk and its use in these patients is contraindicated (seeCONTRAINDICATIONS). Treatment is usually DC-cardioversion. Cardioversion has been used safely and effectively after oral CALAN.

Atrioventricular block

The effect of verapamil on AV conduction and the SA node may cause asymptomatic first-degree AV block and transient bradycardia, sometimes accompanied by nodal escape rhythms. PR-interval prolongation is correlated with verapamil plasma concentrations, especially during the early titration phase of therapy. Higher degrees of AV block, however, were infrequently (0.8%) observed. Marked first-degree block or progressive development to second-degree AV blockor third-degree AV block, requires a reduction in dosage or, in rare instances, discontinuation of verapamil HCl and institution of appropriate therapy, depending upon the clinical situation.

Patients with hypertrophic cardiomyopathy (IHSS)

In 120 patients with hypertrophic cardiomyopathy (most of them refractory or intolerant to propranolol) who received therapy with verapamil at doses up to 720 mg/day, a variety of serious adverse effects were seen. Three patients died in pulmonary edema; all had severe left ventricular outflow obstruction and a past history ofleft ventricular dysfunction. Eight other patients had pulmonary edema and/or severe hypotension; abnormally high (greater than 20 mm Hg) pulmonary wedge pressure and a marked left ventricular outflow obstruction were present in most of these patients. Concomitant administration of quinidine (see PRECAUTIONS, Drug interactions) preceded the severe hypotension in 3 of the 8 patients (2 of whom developed pulmonary edema). Sinus bradycardia occurred in 11% of the patients, second-degree AV block in 4%, and sinus arrest in 2%. It must be appreciated that this group of patients had a serious disease with a high mortality rate. Most adverse effects responded well to dose reduction, and only rarely did verapamil use have to be discontinued.[1]


References

  1. "CALAN SR (VERAPAMIL HYDROCHLORIDE) TABLET, FILM COATED, EXTENDED RELEASE [G.D. SEARLE LLC DIVISION OF PFIZER INC]".