Disopyramide
Disopyramide |
---|
NORPACE® FDA Package Insert |
Indications and Usage |
Dosage and Administration |
Contraindications |
Warnings and Precautions |
Adverse Reactions |
Drug Interactions |
Use in Specific Populations |
Overdosage |
Description |
Clinical Pharmacology |
Nonclinical Toxicology |
How Supplied/Storage and Handling |
Labels and Packages |
Clinical Trials on Disopyramide |
ClinicalTrials.gov |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sheng Shi, M.D. [2]
For patient information about Disopyramide, click here.
Synonyms / Brand Names: NORPACE®;NORPACE CR®;DISOPYRAMIDE PHOSPHATE®
Overview
Disopyramide (INN, trade names Norpace and Rythmodan) is an antiarrhythmic medication used in the treatment of Ventricular Tachycardia.[1] It is a sodium channel blocker and therefore classified as a Class 1a anti-arrhythmic agent.[2]’[3] Disopyramide has a negative inotropic effect on the ventricular myocardium, significantly decreasing the contractility.[4]'[5] Disopyramide also has an anticholinergic effect on the heart which accounts for many adverse side effects. Disopyramide is available in both oral and intravenous forms, and has a low degree of toxicity.[6]
Category
Pyridines;Sodium channel blockers;Amides;Cardiovascular Drugs
FDA Package Insert
NORPACE (disopyramide phosphate) capsule, gelatin coated
Label Title
Indications and Usage | Dosage and Administration | Contraindications | Warnings and Precautions | Adverse Reactions | Drug Interactions | Use in Specific Populations | Overdosage | Description | Clinical Pharmacology | Nonclinical Toxicology | How Supplied/Storage and Handling | Labels and Packages
Mechanism of Action
Norpace (disopyramide phosphate) is a Type 1 antiarrhythmic drug (i.e., similar to procainamide and quinidine). In animal studies Norpace decreases the rate of diastolic depolarization (phase 4) in cells with augmented automaticity, decreases the upstroke velocity (phase 0) and increases the action potential duration of normal cardiac cells, decreases the disparity in refractoriness between infarcted and adjacent normally perfused myocardium, and has no effect on alpha- or beta-adrenergic receptors.
References
- ↑ Guyton, Arthur C., Hall, John E. (2006). Textbook of Medical Physiology (11th ed.). Philadelphia: Elsevier Saunders
- ↑ Rizos, I. I., et al. "Effects of Intravenous Disopyramide and Quinidine on Normal Myocardium and on the Characteristics of Arrhythmias: Intraindividual Comparison in Patients with Sustained Ventricular Tachycardia." European heart journal 8.2 (1987): 154-63. Biological Sciences. Web. 10 Feb. 2012
- ↑ Kim, S. Y. SY, and N. L. NL Benowitz. "Poisoning due to Class IA Antiarrhythmic Drugs. Quinidine, Procainamide and Disopyramide." Drug safety : an international journal of medical toxicology and drug experience 5.6 (1990): 393-420. Biological Sciences; Environmental Science and Pollution Management. Web. 12 Feb. 2012.
- ↑ Levites, R. R., and G. J. GJ Anderson. "Electrophysiological Effects of Disopyramide Phosphate during Experimental Myocardial Ischemia." American Heart Journal 98.3 (1979): 339-44. Biological Sciences. Web. 15 Feb. 2012.
- ↑ Mathur, P. P. PP. "Cardiovascular Effects of a Newer Antiarrhythmic Agent, Disopyramide Phosphate." American Heart Journal 84.6 (1972): 764-70. Biological Sciences; Environmental Science and Pollution Management. Web. 15 Feb. 2012
- ↑ Mathur, P. P. PP. "Cardiovascular Effects of a Newer Antiarrhythmic Agent, Disopyramide Phosphate." American Heart Journal 84.6 (1972): 764-70. Biological Sciences; Environmental Science and Pollution Management. Web. 15 Feb. 2012