Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate

Revision as of 17:02, 26 August 2014 by Deepika Beereddy (talk | contribs)
Jump to navigation Jump to search

Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate
Adult Indications & Dosage
Pediatric Indications & Dosage
Contraindications
Warnings & Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Administration & Monitoring
Overdosage
Pharmacology
Clinical Studies
How Supplied
Images
Patient Counseling Information
Precautions with Alcohol
Brand Names
Look-Alike Names

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Deepika Beereddy, MBBS [2]

Disclaimer

WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.

Overview

Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate is an anti- HIV agent that is FDA approved for the treatment of HIV infection. Common adverse reactions include depressive disorders, insomnia, and headache, diarrhea, nausea, fatigue, dizziness, abnormal dreams, and rash.

Adult Indications and Dosage

FDA-Labeled Indications and Dosage (Adult)

  • COMPLERA, a combination of two nucleoside analog HIV 1 reverse transcriptase inhibitors (emtricitabine and tenofovir disoproxil fumarate) and one non-nucleoside reverse transcriptase inhibitor (rilpivirine), is indicated for use as a complete regimen for the treatment of HIV-1 infection in adult patients with no antiretroviral treatment history and with HIV-1 RNA less than or equal to 100,000 copies/mL at the start of therapy, and in certain virologically-suppressed (HIV-1 RNA <50 copies/mL) adult patients on a stable antiretroviral regimen at start of therapy in order to replace their current antiretroviral treatment regimen (see below).
  • The following points should be considered when initiating therapy with COMPLERA in adult patients with no antiretroviral treatment history:
  • More rilpivirine-treated subjects with HIV-1 RNA greater than 100,000 copies/mL at the start of therapy experienced virologic failure (HIV-1 RNA ≥50 copies/mL) compared to rilpivirine-treated subjects with HIV-1 RNA less than or equal to 100,000 copies/mL.
  • Regardless of HIV-1 RNA level at the start of therapy, more rilpivirine-treated subjects with CD4+ cell count less than 200 cells/mm3 experienced virologic failure compared to rilpivirine-treated subjects with CD4+ cell count greater than or equal to 200 cells/mm3.
  • The observed virologic failure rate in rilpivirine-treated subjects conferred a higher rate of overall treatment resistance and cross-resistance to the NNRTI class compared to efavirenz.
  • More subjects treated with rilpivirine developed tenofovir and lamivudine/emtricitabine associated resistance compared to efavirenz.
  • The efficacy of COMPLERA was established in patients who were virologically-suppressed (HIV-1 RNA <50 copies/mL) on stable ritonavir-boosted protease inhibitor-containing regimen. The following points should be met when considering replacing the current regimen with COMPLERA in virologically-suppressed adults:
  • Patients should have no history of virologic failure.
  • Patients should have been stably suppressed (HIV-1 RNA <50 copies/mL) for at least 6 months prior to switching therapy.
  • Patients should currently be on their first or second antiretroviral regimen prior to switching therapy.
  • Patients should have no current or past history of resistance to any of the three components of COMPLERA.

Additional monitoring of HIV-1 RNA and regimen tolerability is recommended after replacing therapy to assess for potential virologic failure or rebound.

COMPLERA is not recommended for patients less than 18 years of age.

DOSAGE AND ADMINISTRATION

  • Adults: The recommended dose of COMPLERA is one tablet taken orally once daily with food.
  • Renal Impairment: Because COMPLERA is a fixed-dose combination, it should not be prescribed for patients requiring dose reduction such as those with moderate or severe renal impairment (estimated creatinine clearance below 50 mL per minute).
  • Rifabutin Coadministration: If COMPLERA is coadministered with rifabutin, an additional 25 mg tablet of rilpivirine (Edurant®) once per day is recommended to be taken concomitantly with COMPLERA and with a meal for the duration of the rifabutin coadministration.

DOSAGE FORMS AND STRENGTHS

  • COMPLERA is available as tablets. Each tablet contains 200 mg of emtricitabine (FTC), 27.5 mg of rilpivirine hydrochloride (equivalent to 25 mg of rilpivirine) and 300 mg of tenofovir disoproxil fumarate (tenofovir DF or TDF, equivalent to 245 mg of tenofovir disoproxil).
  • The tablets are purplish-pink, capsule-shaped, film-coated, debossed with "GSI" on one side and plain-faced on the other side.

Off-Label Use and Dosage (Adult)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate in adult patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate in adult patients.

Pediatric Indications and Dosage

FDA-Labeled Indications and Dosage (Pediatric)

There is limited information regarding Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate FDA-Labeled Indications and Dosage (Pediatric) in the drug label.

Off-Label Use and Dosage (Pediatric)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate in pediatric patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate in pediatric patients.

Contraindications

Coadministration of COMPLERA is contraindicated with drugs where significant decreases in rilpivirine plasma concentrations may occur, which may result in loss of virologic response and possible resistance and cross-resistance.

Warnings

Lactic Acidosis/Severe Hepatomegaly with Steatosis

Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogs, including tenofovir DF, a component of COMPLERA, in combination with other antiretrovirals. A majority of these cases have been in women. Obesity and prolonged nucleoside exposure may be risk factors. Particular caution should be exercised when administering nucleoside analogs to any patient with known risk factors for liver disease; however, cases have also been reported in patients with no known risk factors. Treatment with COMPLERA should be suspended in any patient who develops clinical or laboratory findings suggestive of lactic acidosis or pronounced hepatotoxicity (which may include hepatomegaly and steatosis even in the absence of marked transaminase elevations).

Patients Coinfected with HIV-1 and HBV

It is recommended that all patients with HIV-1 be tested for the presence of chronic hepatitis B virus before initiating antiretroviral therapy. COMPLERA is not approved for the treatment of chronic HBV infection and the safety and efficacy of COMPLERA have not been established in patients coinfected with HBV and HIV-1. Severe acute exacerbations of hepatitis B have been reported in patients who are coinfected with HBV and HIV-1 and have discontinued emtricitabine or tenofovir DF, two of the components of COMPLERA. In some patients infected with HBV and treated with EMTRIVA®, the exacerbations of hepatitis B were associated with liver decompensation and liver failure. Patients who are coinfected with HIV-1 and HBV should be closely monitored with both clinical and laboratory follow-up for at least several months after stopping treatment with COMPLERA. If appropriate, initiation of anti-hepatitis B therapy may be warranted.

New Onset or Worsening Renal Impairment

Renal impairment, including cases of acute renal failure and Fanconi syndrome (renal tubular injury with severe hypophosphatemia), has been reported with the use of tenofovir DF.

It is recommended that estimated creatinine clearance be assessed in all patients prior to initiating therapy and as clinically appropriate during therapy with COMPLERA. In patients at risk of renal dysfunction, including patients who have previously experienced renal events while receiving HEPSERA®, it is recommended that estimated creatinine clearance, serum phosphorus, urine glucose, and urine protein be assessed prior to initiation of COMPLERA, and periodically during COMPLERA therapy.

COMPLERA should be avoided with concurrent or recent use of a nephrotoxic agent (e.g., high-dose or multiple non-steroidal anti-inflammatory drugs (NSAIDs)). Cases of acute renal failure after initiation of high dose or multiple NSAIDs have been reported in HIV-infected patients with risk factors for renal dysfunction who appeared stable on tenofovir DF. Some patients required hospitalization and renal replacement therapy. Alternatives to NSAIDs should be considered, if needed, in patients at risk for renal dysfunction.

Persistent or worsening bone pain, pain in extremities, fractures and/or muscular pain or weakness may be manifestations of proximal renal tubulopathy and should prompt an evaluation of renal function in at-risk patients.

Emtricitabine and tenofovir are principally eliminated by the kidney; however, rilpivirine is not. Since COMPLERA is a combination product and the dose of the individual components cannot be altered, patients with estimated creatinine clearance below 50 mL per minute should not receive COMPLERA.

Drug Interactions

Caution should be given to prescribing COMPLERA with drugs that may reduce the exposure of rilpivirine.

In healthy subjects, supratherapeutic doses of rilpivirine (75 mg once daily and 300 mg once daily) have been shown to prolong the QTc interval of the electrocardiogram. COMPLERA should be used with caution when coadministered with a drug with a known risk of Torsade de Pointes.

Depressive Disorders

The adverse reaction depressive disorders (depressed mood, depression, dysphoria, major depression, mood altered, negative thoughts, suicide attempt, suicidal ideation) has been reported with rilpivirine. During the Phase 3 trials (N=1368) through 96 weeks, the incidence of depressive disorders (regardless of causality, severity) reported among rilpivirine (N=686) or efavirenz (N=682) was 9% and 8%, respectively. Most events were mild or moderate in severity. The incidence of Grades 3 and 4 depressive disorders (regardless of causality) was 1% for both rilpivirine and efavirenz. The incidence of discontinuation due to depressive disorders among rilpivirine or efavirenz was 1% in each arm. Suicidal ideation was reported in 4 subjects in each arm while suicide attempt was reported in 2 subjects in the rilpivirine arm. Patients with severe depressive symptoms should seek immediate medical evaluation to assess the possibility that the symptoms are related to COMPLERA, and if so, to determine whether the risks of continued therapy outweigh the benefits.

Hepatotoxicity

Hepatic adverse events have been reported in patients receiving a rilpivirine containing regimen. Patients with underlying hepatitis B or C, or marked elevations in liver-associated tests prior to treatment may be at increased risk for worsening or development of liver-associated test elevations with use of COMPLERA. A few cases of hepatic toxicity have been reported in patients receiving a rilpivirine containing regimen who had no pre-existing hepatic disease or other identifiable risk factors. Appropriate laboratory testing prior to initiating therapy and monitoring for hepatotoxicity during therapy with COMPLERA is recommended in patients with underlying hepatic disease such as hepatitis B or C, or in patients with marked elevations in liver-associated tests prior to treatment initiation. Liver-associated test monitoring should also be considered for patients without pre-existing hepatic dysfunction or other risk factors.

Bone Effects of Tenofovir DF

Bone Mineral Density:

In clinical trials in HIV-1-infected adults, tenofovir DF was associated with slightly greater decreases in bone mineral density (BMD) and increases in biochemical markers of bone metabolism, suggesting increased bone turnover relative to comparators. Serum parathyroid hormone levels and 1,25 Vitamin D levels were also higher in subjects receiving tenofovir DF. For more information, please consult the VIREAD prescribing information.

The effects of tenofovir DF-associated changes in BMD and biochemical markers on long-term bone health and future fracture risk are unknown. Assessment of BMD should be considered for patients who have a history of pathologic bone fracture or other risk factors for osteoporosis or bone loss. Although the effect of supplementation with calcium and Vitamin D was not studied, such supplementation may be beneficial for all patients. If bone abnormalities are suspected then appropriate consultation should be obtained.

Mineralization Defects:

Cases of osteomalacia associated with proximal renal tubulopathy, manifested as bone pain or pain in extremities and which may contribute to fractures, have been reported in association with the use of tenofovir DF. Arthralgias and muscle pain or weakness have also been reported in cases of proximal renal tubulopathy. Hypophosphatemia and osteomalacia secondary to proximal renal tubulopathy should be considered in patients at risk of renal dysfunction who present with persistent or worsening bone or muscle symptoms while receiving products containing tenofovir DF.

Coadministration with Other Products

COMPLERA should not be administered concurrently with other medicinal products containing the active components emtricitabine or tenofovir DF (ATRIPLA®, EMTRIVA, STRIBILD®, TRUVADA®, VIREAD), with medicinal products containing lamivudine (Epivir®, Epivir-HBV®, Epzicom®, Combivir®, Trizivir®), or with adefovir dipivoxil (HEPSERA). COMPLERA should not be administered with rilpivirine (Edurant) unless needed for dose adjustment (e.g., with rifabutin).

Fat Redistribution

Redistribution/accumulation of body fat including central obesity, dorsocervical fat enlargement (buffalo hump), peripheral wasting, facial wasting, breast enlargement, and "cushingoid appearance" have been observed in patients receiving antiretroviral therapy. The mechanism and long-term consequences of these events are unknown. A causal relationship has not been established.

Immune Reconstitution Syndrome

Immune reconstitution syndrome has been reported in patients treated with combination antiretroviral therapy, including the components of COMPLERA. During the initial phase of combination antiretroviral treatment, patients whose immune system responds may develop an inflammatory response to indolent or residual opportunistic infections [such as Mycobacterium avium infection, cytomegalovirus, Pneumocystis jirovecii pneumonia (PCP), or tuberculosis], which may necessitate further evaluation and treatment.

Autoimmune disorders (such as Graves' disease, polymyositis, and Guillain-Barré syndrome) have also been reported to occur in the setting of immune reconstitution, however, the time to onset is more variable, and can occur many months after initiation of treatment.

Adverse Reactions

Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

In HIV-1-Infected Subjects With No Antiretroviral Treatment History

Studies C209 and C215 – Treatment-Emergent Adverse Drug Reactions: The safety assessment of rilpivirine, used in combination with other antiretroviral drugs, is based on the Week 96 pooled data from 1368 subjects in the Phase 3 trials TMC278-C209 (ECHO) and TMC278-C215 (THRIVE) in antiretroviral treatment-naive HIV-1-infected adult subjects. A total of 686 subjects received rilpivirine in combination with other antiretroviral drugs as background regimen; most (N=550) received emtricitabine/tenofovir DF as background regimen. The number of subjects randomized to the control arm efavirenz was 682, of which 546 received emtricitabine/tenofovir DF as background regimen [See Clinical Studies (14)]. The median duration of exposure for subjects in either treatment arm was 104 weeks.

Adverse drug reactions (ADR) observed at Week 96 in subjects who received rilpivirine or efavirenz plus emtricitabine/tenofovir DF as background regimen are shown in Table 1. No new types of adverse reactions were identified between Week 48 and Week 96. The adverse drug reactions observed in this subset of subjects were generally consistent with those seen for the overall patient population participating in these studies (refer to the prescribing information for Edurant).

The proportion of subjects who discontinued treatment with rilpivirine or efavirenz + emtricitabine/tenofovir DF due to ADR, regardless of severity, was 2% and 5%, respectively. The most common ADRs leading to discontinuation were psychiatric disorders: 9 (1.6%) subjects in the rilpivirine + emtricitabine/tenofovir DF arm and 12 (2.2%) subjects in the efavirenz + emtricitabine/tenofovir DF arm. Rash led to discontinuation in 1 (0.2%) subject in the rilpivirine + emtricitabine/tenofovir DF arm and 10 (1.8%) subjects in the efavirenz + emtricitabine/tenofovir DF arm.

Common Adverse Drug Reactions

Clinical ADRs to rilpivirine or efavirenz of at least moderate intensity (≥ Grade 2) reported in at least 2% of adult subjects are shown in Table 1.

Rilpivirine: Treatment-emergent adverse drug reactions of at least moderate intensity (≥ Grade 2) that occurred in less than 2% of subjects treated with rilpivirine plus any of the allowed background regimens (N=686) in clinical studies C209 and C215 include (grouped by Body System): vomiting, diarrhea, abdominal discomfort, abdominal pain, fatigue, cholecystitis, cholelithiasis, decreased appetite, somnolence, sleep disorders, anxiety, glomerulonephritis membranous, glomerulonephritis mesangioproliferative, and nephrolithiasis.

In Virologically-Suppressed HIV-1-Infected Subjects

No new adverse reactions to COMPLERA were identified in stable, virologically-suppressed subjects switching to COMPLERA from a regimen containing a ritonavir-boosted protease inhibitor; however the frequency of adverse reactions increased by 20% (Study 106) after switching to COMPLERA.

Emtricitabine and Tenofovir Disoproxil Fumarate: The following adverse reactions were observed in clinical trials of emtricitabine or tenofovir DF in combination with other antiretroviral agents:

The most common adverse drug reactions occurring in at least 10% of HIV-1-infected treatment-naive adult subjects in a Phase 3 clinical trial of emtricitabine and tenofovir DF in combination with another antiretroviral agent are diarrhea, nausea, fatigue, headache, dizziness, depression, insomnia, abnormal dreams, and rash. In addition, adverse drug reactions that occurred in at least 5% of treatment-experienced or treatment-naive subjects receiving emtricitabine or tenofovir DF with other antiretroviral agents in clinical trials include abdominal pain, dyspepsia, vomiting, fever, pain, nasopharyngitis, pneumonia, sinusitis, upper respiratory tract infection, arthralgia, back pain, myalgia, paresthesia, peripheral neuropathy (including peripheral neuritis and neuropathy), anxiety, increased cough, and rhinitis.

Skin discoloration has been reported with higher frequency among emtricitabine-treated subjects; it was manifested by hyperpigmentation on the palms and/or soles and was generally mild and asymptomatic. The mechanism and clinical significance are unknown.

Laboratory Abnormalities: The percentage of subjects treated with rilpivirine + emtricitabine/tenofovir DF or efavirenz + emtricitabine/tenofovir DF in studies C209 and C215 with selected treatment-emergent laboratory abnormalities (Grades 1 to 4), representing worst grade toxicity, are presented in Table 2.

Emtricitabine or Tenofovir Disoproxil Fumarate: The following laboratory abnormalities have been previously reported in subjects treated with emtricitabine or tenofovir DF with other antiretroviral agents in other clinical trials: Grade 3 or 4 laboratory abnormalities of increased pancreatic amylase (>2.0 x ULN), increased serum amylase (>175 U/L), increased lipase (>3.0 x ULN), increased alkaline phosphatase (>550 U/L), increased or decreased serum glucose (<40 or >250 mg/dL), increased glycosuria (≥3+), increased creatine kinase (M: >990 U/L; F: >845 U/L), decreased neutrophils (<750/mm3) and increased hematuria (>75 RBC/HPF) occurred.

Adrenal Function

In the pooled Phase 3 trials of C209 and C215, in subjects treated with rilpivirine plus any of the allowed background regimen (N=686), at Week 96, there was an overall mean change from baseline in basal cortisol of -19.1 (95% CI: -30.9; -7.4) nmol/L in the rilpivirine group, and of -0.6 (95% CI: -13.3; 12.2) nmol/L in the efavirenz group. At Week 96, the mean change from baseline in ACTH-stimulated cortisol levels was lower in the rilpivirine group (+18.4 ± 8.36 nmol/L) than in the efavirenz group (+54.1 ± 7.24 nmol/L). Mean values for both basal and ACTH-stimulated cortisol values at Week 96 were within the normal range. Overall, there were no serious adverse events, deaths, or treatment discontinuations that could clearly be attributed to adrenal insufficiency. Effects on adrenal function were comparable by background N(t)RTIs.

Serum Creatinine

In the pooled Phase 3 trials of C209 and C215 trials in subjects treated with rilpivirine plus any of the allowed background regimen (N=686), there was a small increase in serum creatinine over 96 weeks of treatment with rilpivirine. Most of this increase occurred within the first four weeks of treatment with a mean change of 0.1 mg/dL (range: -0.3 mg/dL to 0.6 mg/dL) observed through Week 96. In subjects who entered the trial with mild or moderate renal impairment, the serum creatinine increase observed was similar to that seen in subjects with normal renal function. These changes are not considered to be clinically relevant and no subject discontinued treatment due to increases in serum creatinine. Creatinine increases were comparable by background N(t)RTIs.

Serum Lipids

Changes from baseline in total cholesterol, LDL-cholesterol and triglycerides are presented in Table 3.

Subjects Coinfected with Hepatitis B and/or Hepatitis C Virus

In patients coinfected with hepatitis B or C virus receiving rilpivirine in studies C209 and C215, the incidence of hepatic enzyme elevation was higher than in subjects receiving rilpivirine who were not coinfected. The same increase was also observed in the efavirenz arm. The pharmacokinetic exposure of rilpivirine in coinfected subjects was comparable to that in subjects without coinfection.

Postmarketing Experience

The following adverse reactions have been identified during postapproval use of rilpivirine- or tenofovir DF-containing regimens . Because postmarketing reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Rilpivirine:

  • Renal and Urinary Disorders
  • nephrotic syndrome

Emtricitabine:

No postmarketing adverse reactions have been identified for inclusion in this section.

Tenofovir Disoproxil Fumarate:

  • Immune System Disorders
  • allergic reaction, including angioedema
  • Metabolism and Nutrition Disorders
  • lactic acidosis, hypokalemia, hypophosphatemia
  • Respiratory, Thoracic, and Mediastinal Disorders
  • dyspnea
  • Gastrointestinal Disorders
  • pancreatitis, increased amylase, abdominal pain
  • Hepatobiliary Disorders
  • hepatic steatosis, hepatitis, increased liver enzymes (most commonly AST, ALT gamma GT)
  • Skin and Subcutaneous Tissue Disorders
  • rash
  • Musculoskeletal and Connective Tissue Disorders
  • rhabdomyolysis, osteomalacia (manifested as bone pain and which may contribute to fractures), muscular weakness, myopathy
  • Renal and Urinary Disorders
  • acute renal failure, renal failure, acute tubular necrosis, Fanconi syndrome, proximal renal tubulopathy, interstitial nephritis (including acute cases), nephrogenic diabetes insipidus, renal insufficiency, increased creatinine, proteinuria, polyuria
  • General Disorders and Administration Site Conditions
  • asthenia

The following adverse reactions, listed under the body system headings above, may occur as a consequence of proximal renal tubulopathy: rhabdomyolysis, osteomalacia, hypokalemia, muscular weakness, myopathy, hypophosphatemia.

Drug Interactions

Drugs Inducing or Inhibiting CYP3A Enzymes

Rilpivirine is primarily metabolized by cytochrome P450 (CYP) 3A, and drugs that induce or inhibit CYP3A may thus affect the clearance of rilpivirine [See Clinical Pharmacology (12.3), Contraindications (4)]. Coadministration of rilpivirine and drugs that induce CYP3A may result in decreased plasma concentrations of rilpivirine and loss of virologic response and possible resistance to rilpivirine or to the class of NNRTIs. Coadministration of rilpivirine and drugs that inhibit CYP3A may result in increased plasma concentrations of rilpivirine.

Rilpivirine at a dose of 25 mg once daily is not likely to have a clinically relevant effect on the exposure of drugs metabolized by CYP enzymes.

Drugs Increasing Gastric pH

Coadministration of rilpivirine with drugs that increase gastric pH may decrease plasma concentrations of rilpivirine and loss of virologic response and possible resistance to rilpivirine or to the class of NNRTIs [See Table 4].

Drugs Affecting Renal Function

Because emtricitabine and tenofovir are primarily eliminated by the kidneys through a combination of glomerular filtration and active tubular secretion, coadministration of COMPLERA with drugs that reduce renal function or compete for active tubular secretion may increase serum concentrations of emtricitabine, tenofovir, and/or other renally eliminated drugs. Some examples of drugs that are eliminated by active tubular secretion include, but are not limited to, acyclovir, adefovir dipivoxil, cidofovir, ganciclovir, valacyclovir, valganciclovir, aminoglycosides (e.g., gentamicin), and high-dose or multiple NSAIDs.

QT Prolonging Drugs

There is limited information available on the potential for a pharmacodynamic interaction between rilpivirine and drugs that prolong the QTc interval of the electrocardiogram. In a study of healthy subjects, supratherapeutic doses of rilpivirine (75 mg once daily and 300 mg once daily) have been shown to prolong the QTc interval of the electrocardiogram. COMPLERA should be used with caution when coadministered with a drug with a known risk of Torsade de Pointes.

Established and Other Potentially Significant Drug Interactions

Important drug interaction information for COMPLERA is summarized in Table 4. The drug interactions described are based on studies conducted with emtricitabine, rilpivirine, or tenofovir DF as individual medications that may occur with COMPLERA or are potential drug interactions; no drug interaction studies have been conducted using COMPLERA, [Tables 6–7]. The tables include potentially significant interactions, but are not all inclusive.

Drugs with No Observed or Predicted Interactions with COMPLERA

No clinically significant drug interactions have been observed between emtricitabine and the following medications: famciclovir or tenofovir DF. Similarly, no clinically significant drug interactions have been observed between tenofovir DF and the following medications: entecavir, methadone, oral contraceptives, ribavirin, or tacrolimus in studies conducted in healthy subjects.

No clinically significant drug interactions have been observed between rilpivirine and the following medications: acetaminophen, atorvastatin, chlorzoxazone, ethinyl estradiol, norethindrone, sildenafil, telaprevir, or tenofovir DF. Rilpivirine did not have a clinically significant effect on the pharmacokinetics of digoxin or metformin. No clinically relevant drug-drug interaction is expected when rilpivirine is coadministered with ribavirin.

Use in Specific Populations

Pregnancy

Pregnancy Category (FDA): B Emtricitabine: The incidence of fetal variations and malformations was not increased in embryofetal toxicity studies performed with emtricitabine in mice at exposures (AUC) approximately 60 times higher and in rabbits at approximately 120 times higher than human exposures at the recommended daily dose.

Rilpivirine: Studies in animals have shown no evidence of embryonic or fetal toxicity or an effect on reproductive function. In offspring from rat and rabbit dams treated with rilpivirine during pregnancy and lactation, there were no toxicologically significant effects on developmental endpoints. The exposures at the embryo-fetal No Observed Adverse Effects Levels in rats and rabbits were respectively 15 and 70 times higher than the exposure in humans at the recommended dose of 25 mg once daily.

Tenofovir Disoproxil Fumarate: Reproduction studies have been performed in rats and rabbits at doses up to 14 and 19 times the human dose based on body surface area comparisons and revealed no evidence of impaired fertility or harm to the fetus due to tenofovir.

There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, COMPLERA should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Antiretroviral Pregnancy Registry: To monitor fetal outcomes of pregnant women exposed to COMPLERA, an Antiretroviral Pregnancy Registry has been established. Healthcare providers are encouraged to register patients by calling 1-800-258-4263.
Pregnancy Category (AUS): There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate in women who are pregnant.

Labor and Delivery

There is no FDA guidance on use of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate during labor and delivery.

Nursing Mothers

The Centers for Disease Control and Prevention recommend that HIV infected mothers not breastfeed their infants to avoid risking postnatal transmission of HIV.

Emtricitabine: Samples of breast milk obtained from five HIV-1-infected mothers show that emtricitabine is secreted in human milk. Breastfeeding infants whose mothers are being treated with emtricitabine may be at risk for developing viral resistance to emtricitabine. Other emtricitabine-associated risks in infants breastfed by mothers being treated with emtricitabine are unknown.

Rilpivirine: Studies in lactating rats and their offspring indicate that rilpivirine was present in rat milk. It is not known whether rilpivirine is secreted in human milk.

Tenofovir Disoproxil Fumarate: Samples of breast milk obtained from five HIV-1-infected mothers in the first post-partum week show that tenofovir is excreted in human milk. The impact of this exposure in breastfed infants is unknown.

Because of both the potential for HIV transmission and the potential for serious adverse reactions in nursing infants, mothers should be instructed not to breastfeed if they are receiving COMPLERA.

Pediatric Use

COMPLERA is not recommended for patients less than 18 years of age because not all the individual components of COMPLERA have safety, efficacy and dosing recommendations available for all pediatric age groups.

Geriatic Use

Clinical studies of emtricitabine, rilpivirine, or tenofovir DF did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, dose selection for the elderly patients should be cautious, keeping in mind the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

Gender

There is no FDA guidance on the use of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate with respect to specific gender populations.

Race

There is no FDA guidance on the use of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate with respect to specific racial populations.

Renal Impairment

Because COMPLERA is a fixed-dose combination, it should not be prescribed for patients requiring dosage adjustment such as those with moderate, severe or end stage renal impairment (estimated creatinine clearance below 50 mL per minute) or that require dialysis.

Hepatic Impairment

No dose adjustment of COMPLERA is required in patients with mild (Child-Pugh Class A) or moderate (Child-Pugh Class B) hepatic impairment. COMPLERA has not been studied in patients with severe hepatic impairment (Child-Pugh Class C).

Females of Reproductive Potential and Males

There is no FDA guidance on the use of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate in women of reproductive potentials and males.

Immunocompromised Patients

There is no FDA guidance one the use of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate in patients who are immunocompromised.

Administration and Monitoring

Administration

Adults: The recommended dose of COMPLERA is one tablet taken orally once daily with food [See Clinical Pharmacology (12.3)].

Renal Impairment: Because COMPLERA is a fixed-dose combination, it should not be prescribed for patients requiring dose reduction such as those with moderate or severe renal impairment (estimated creatinine clearance below 50 mL per minute).

Rifabutin Coadministration: If COMPLERA is coadministered with rifabutin, an additional 25 mg tablet of rilpivirine (Edurant®) once per day is recommended to be taken concomitantly with COMPLERA and with a meal for the duration of the rifabutin coadministration.

Monitoring

The efficacy of COMPLERA was established in patients who were virologically-suppressed (HIV-1 RNA <50 copies/mL) on stable ritonavir-boosted protease inhibitor-containing regimen.

Monitoring of HIV-1 RNA and regimen tolerability is recommended after replacing therapy to assess for potential virologic failure or rebound.

IV Compatibility

There is limited information regarding the compatibility of Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate and IV administrations.

Overdosage

If overdose occurs the patient must be monitored for evidence of toxicity. Treatment of overdose with COMPLERA consists of general supportive measures including monitoring of vital signs and ECG (QT interval) as well as observation of the clinical status of the patient.

Emtricitabine: Limited clinical experience is available at doses higher than the therapeutic dose of EMTRIVA. In one clinical pharmacology study, single doses of emtricitabine 1200 mg were administered to 11 subjects. No severe adverse reactions were reported. The effects of higher doses are not known.

Hemodialysis treatment removes approximately 30% of the emtricitabine dose over a 3-hour dialysis period starting within 1.5 hours of emtricitabine dosing (blood flow rate of 400 mL per minute and a dialysate flow rate of 600 mL per minute). It is not known whether emtricitabine can be removed by peritoneal dialysis.

Rilpivirine: There is no specific antidote for overdose with rilpivirine. Human experience of overdose with rilpivirine is limited. Since rilpivirine is highly bound to plasma protein, dialysis is unlikely to result in significant removal of rilpivirine.

Administration of activated charcoal may be used to aid in removal of unabsorbed active substance.

Tenofovir Disoproxil Fumarate: Limited clinical experience at doses higher than the therapeutic dose of VIREAD 300 mg is available. In one study, 600 mg tenofovir DF was administered to 8 subjects orally for 28 days, and no severe adverse reactions were reported. The effects of higher doses are not known.

Tenofovir is efficiently removed by hemodialysis with an extraction coefficient of approximately 54%. Following a single 300 mg dose of VIREAD, a four-hour hemodialysis session removed approximately 10% of the administered tenofovir dose.

Pharmacology

Mechanism of Action

COMPLERA is a fixed-dose combination of the antiretroviral drugs emtricitabine, rilpivirine and tenofovir disoproxil fumarate.

Emtricitabine: Emtricitabine, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form emtricitabine 5'-triphosphate. Emtricitabine 5'-triphosphate inhibits the activity of the HIV-1 RT by competing with the natural substrate deoxycytidine 5'-triphosphate and by being incorporated into nascent viral DNA which results in chain termination. Emtricitabine 5′-triphosphate is a weak inhibitor of mammalian DNA polymerase α, β, ε, and mitochondrial DNA polymerase γ.

Rilpivirine: Rilpivirine is a diarylpyrimidine non-nucleoside reverse transcriptase inhibitor of HIV-1 and inhibits HIV-1 replication by non-competitive inhibition of HIV-1 RT. Rilpivirine does not inhibit the human cellular DNA polymerases α, β, and mitochondrial DNA polymerase γ.

Tenofovir Disoproxil Fumarate: Tenofovir DF is an acyclic nucleoside phosphonate diester analog of adenosine monophosphate. Tenofovir DF requires initial diester hydrolysis for conversion to tenofovir and subsequent phosphorylations by cellular enzymes to form tenofovir diphosphate. Tenofovir diphosphate inhibits the activity of HIV-1 RT by competing with the natural substrate deoxyadenosine 5′-triphosphate and, after incorporation into DNA, by DNA chain termination. Tenofovir diphosphate is a weak inhibitor of mammalian DNA polymerases α, β, and mitochondrial DNA polymerase γ.

Structure

Emtricitabine: The chemical name of emtricitabine is 5-fluoro-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine. Emtricitabine is the (–) enantiomer of a thio analog of cytidine, which differs from other cytidine analogs in that it has a fluorine in the 5-position.

It has a molecular formula of C8H10FN3O3S and a molecular weight of 247.24. It has the following structural formula:

Emtricitabine is a white to off-white crystalline powder with a solubility of approximately 112 mg per mL in water at 25 °C.

Rilpivirine: Rilpivirine is available as the hydrochloride salt. The chemical name for rilpivirine hydrochloride is 4-4-4-(E)-2-cyanoethenyl-2,6-dimethylphenyl amino-2-pyrimidinylamino benzonitrile monohydrochloride. Its molecular formula is C22H18N6 • HCl and its molecular weight is 402.88. Rilpivirine hydrochloride has the following structural formula:

Rilpivirine hydrochloride is a white to almost white powder. Rilpivirine hydrochloride is practically insoluble in water over a wide pH range.

Tenofovir Disoproxil Fumarate: Tenofovir DF is a fumaric acid salt of the bis-isopropoxycarbonyloxymethyl ester derivative of tenofovir. The chemical name of tenofovir DF is 9-(R)-2 bis(isopropoxycarbonyl)oxy- methoxy phosphinyl methoxy propyl adenine fumarate (1:1). It has a molecular formula of C19H30N5O10P • C4H4O4 and a molecular weight of 635.52. It has the following structural formula:

Tenofovir DF is a white to off-white crystalline powder with a solubility of 13.4 mg per mL in water at 25 °C. All dosages are expressed in terms of tenofovir DF except where otherwise noted.

Pharmacodynamics

Effects on Electrocardiogram

The effect of rilpivirine at the recommended dose of 25 mg once daily on the QTcF interval was evaluated in a randomized, placebo and active (moxifloxacin 400 mg once daily) controlled crossover study in 60 healthy adults, with 13 measurements over 24 hours at steady state. The maximum mean time-matched (95% upper confidence bound) differences in QTcF interval from placebo after baseline-correction was 2.0 (5.0) milliseconds (i.e., below the threshold of clinical concern).

When supratherapeutic doses of 75 mg once daily and 300 mg once daily of rilpivirine were studied in healthy adults, the maximum mean time-matched (95% upper confidence bound) differences in QTcF interval from placebo after baseline-correction were 10.7 (15.3) and 23.3 (28.4) milliseconds, respectively. Steady-state administration of rilpivirine 75 mg once daily and 300 mg once daily resulted in a mean steady-state Cmax approximately 2.6-fold and 6.7-fold, respectively, higher than the mean Cmax observed with the recommended 25 mg once daily dose of rilpivirine.

Pharmacokinetics

COMPLERA: Under fed conditions (total calorie content of the meal was approximately 400 kcal with approximately 13 grams of fat), rilpivirine, emtricitabine and tenofovir exposures were bioequivalent when comparing COMPLERA to EMTRIVA capsules (200 mg) plus Edurant tablets (25 mg) plus VIREAD tablets (300 mg) following single-dose administration to healthy subjects (N=34).

Rilpivirine is approximately 99.7% bound to plasma proteins in vitro, primarily to albumin. In vitro experiments indicate that rilpivirine primarily undergoes oxidative metabolism by the cytochrome CYP3A system. The terminal elimination half-life of rilpivirine is approximately 50 hours. After single dose oral administration of 14C-rilpivirine, on average 85% and 6.1% of the radioactivity could be retrieved in feces and urine, respectively. In feces, unchanged rilpivirine accounted for on average 25% of the administered dose. Only trace amounts of unchanged rilpivirine (less than 1% of dose) were detected in urine.

Tenofovir Disoproxil Fumarate: Following oral administration of a single 300 mg dose of VIREAD to HIV-1-infected subjects in the fasted state, Cmax was achieved in one hour. Cmax and AUC values were 0.30 ± 0.09 µg per mL and 2.29 ± 0.69 µg∙hr per mL, respectively. The oral bioavailability of tenofovir from VIREAD in fasted subjects is approximately 25%. Less than 0.7% of tenofovir binds to human plasma proteins in vitro over the range of 0.01 to 25 µg per mL. Approximately 70–80% of the intravenous dose of tenofovir is recovered as unchanged drug in the urine within 72 hours of dosing. Tenofovir is eliminated by a combination of glomerular filtration and active tubular secretion with a renal clearance in adults with creatinine clearance >80 mL per minute of 243.5 ± 33.3 mL per minute (mean ± SD). Following a single oral dose, the terminal elimination half-life of tenofovir is approximately 17 hours.

Effects of Food on Oral Absorption

The food effect trial for COMPLERA evaluated two types of meals. The trial defined a meal with 390 kcal containing 12 g fat as a light meal, and a meal with 540 kcal containing 21 g fat as a standard meal. Relative to fasting conditions, the administration of COMPLERA to healthy adult subjects with both types of meals resulted in increased exposures of rilpivirine and tenofovir. The Cmax and AUC of rilpivirine increased 34% and 9% with a light meal, while increasing 26% and 16% with a standard meal, respectively. The Cmax and AUC of tenofovir increased 12% and 28% with a light meal, while increasing 32% and 38% with a standard meal, respectively. Emtricitabine exposures were not affected by food.

The effects on rilpivirine, emtricitabine and tenofovir exposure when COMPLERA is administered with a high fat meal were not evaluated.

COMPLERA should be taken with food.

Special Populations

Race

Emtricitabine: No pharmacokinetic differences due to race have been identified following the administration of EMTRIVA.

Rilpivirine: Population pharmacokinetic analysis of rilpivirine in HIV-1-infected subjects indicated that race had no clinically relevant effect on the exposure to rilpivirine.

Tenofovir Disoproxil Fumarate: There were insufficient numbers from racial and ethnic groups other than Caucasian to adequately determine potential pharmacokinetic differences among these populations following the administration of VIREAD.

Gender

No clinically relevant pharmacokinetic differences have been observed between men and women for emtricitabine, rilpivirine, and tenofovir DF.

Pediatric Patients

Emtricitabine has been studied in pediatric subjects from 3 months to 17 years of age. Tenofovir DF has been studied in adolescent subjects (12 to less than 18 years of age). The pharmacokinetics of rilpivirine in pediatric subjects have not been established.

Geriatric Patients

Pharmacokinetics of emtricitabine, rilpivirine and tenofovir have not been fully evaluated in the elderly (65 years of age and older) [See Use in Specific Populations (8.5)].

Patients with Renal Impairment

Emtricitabine and Tenofovir Disoproxil Fumarate: The pharmacokinetics of emtricitabine and tenofovir DF are altered in subjects with renal impairment. In subjects with creatinine clearance below 50 mL per minute or with end stage renal disease requiring dialysis, Cmax, and AUC of emtricitabine and tenofovir were increased [See Warnings and Precautions (5.3) and Use in Specific Populations (8.6)].

Rilpivirine: Population pharmacokinetic analysis indicated that rilpivirine exposure was similar in HIV-1-infected subjects with mild renal impairment relative to HIV-1-infected subjects with normal renal function. There is limited or no information regarding the pharmacokinetics of rilpivirine in patients with moderate or severe renal impairment or in patients with end-stage renal disease, and rilpivirine concentrations may be increased due to alteration of drug absorption, distribution, and metabolism secondary to renal dysfunction [See Use in Specific Populations (8.6)].

Patients with Hepatic Impairment

Emtricitabine: The pharmacokinetics of emtricitabine have not been studied in subjects with hepatic impairment; however, emtricitabine is not significantly metabolized by liver enzymes, so the impact of liver impairment should be limited.

Rilpivirine: Rilpivirine is primarily metabolized and eliminated by the liver. In a study comparing 8 subjects with mild hepatic impairment (Child-Pugh score A) to 8 matched controls and 8 subjects with moderate hepatic impairment (Child-Pugh score B) to 8 matched controls, the multiple dose exposure of rilpivirine was 47% higher in subjects with mild hepatic impairment and 5% higher in subjects with moderate hepatic impairment [See Use in Specific Populations (8.7)].

Tenofovir Disoproxil Fumarate: The pharmacokinetics of tenofovir following a 300 mg dose of VIREAD have been studied in non-HIV-infected subjects with moderate to severe hepatic impairment. There were no substantial alterations in tenofovir pharmacokinetics in subjects with hepatic impairment compared with unimpaired subjects.

Hepatitis B and/or Hepatitis C Virus Coinfection

Pharmacokinetics of emtricitabine and tenofovir DF have not been fully evaluated in hepatitis B and/or C virus-coinfected patients. Population pharmacokinetic analysis indicated that hepatitis B and/or C virus coinfection had no clinically relevant effect on the exposure to rilpivirine.

Assessment of Drug Interactions

COMPLERA is a complete regimen for the treatment of HIV-1 infection; therefore, COMPLERA should not be administered with other HIV antiretroviral medications. Information regarding potential drug-drug interactions with other antiretroviral medications is not provided. Please refer to the Edurant, VIREAD and EMTRIVA prescribing information as needed.

The drug interaction studies described were conducted with emtricitabine, rilpivirine, or tenofovir DF as individual agents; no drug interaction studies have been conducted using COMPLERA.

Emtricitabine and Tenofovir Disoproxil Fumarate: In vitro and clinical pharmacokinetic drug-drug interaction studies have shown that the potential for CYP mediated interactions involving emtricitabine and tenofovir with other medicinal products is low.

Emtricitabine and tenofovir are primarily excreted by the kidneys by a combination of glomerular filtration and active tubular secretion. No drug-drug interactions due to competition for renal excretion have been observed; however, coadministration of emtricitabine and tenofovir DF with drugs that are eliminated by active tubular secretion may increase concentrations of emtricitabine, tenofovir, and/or the coadministered drug [See Drug Interactions (7.6)].

Drugs that decrease renal function may increase concentrations of emtricitabine and/or tenofovir.

Drug interaction studies were performed for emtricitabine and the following medications: tenofovir DF and famciclovir. Tenofovir increased the Cmin of emtricitabine by 20% (90% confidence interval [CI]: [↑12 to ↑29]) and had no effect on emtricitabine Cmax and AUC. Emtricitabine had no effect on the Cmax, AUC and Cmin of tenofovir. Coadministration of emtricitabine and famciclovir had no effect on the Cmax or AUC of either medication.

Drug interaction studies were performed for tenofovir DF and the following medications: entecavir, methadone, oral contraceptives (ethinyl estradiol/norgestimate), ribavirin, and tacrolimus. Tacrolimus increased the Cmax of tenofovir by 13% (90% CI: [↑1 to ↑27]) and had no effect on the tenofovir AUC and Cmin. Tenofovir had no effect on the Cmax, AUC and Cmin of tacrolimus.

The Cmax, AUC and Cmin of tenofovir were not affected in the presence of entecavir. Tenofovir increased the AUC of entecavir by 13% (90% CI: [↑11 to ↑15]) and had no effect on the entecavir Cmax and Cmin.

Tenofovir had no effect on the Cmax, AUC and Cmin of methadone or ethinyl estradiol/norgestimate or the Cmax and AUC of ribavirin.

Rilpivirine: Rilpivirine is primarily metabolized by cytochrome CYP3A, and drugs that induce or inhibit CYP3A may thus affect the clearance of rilpivirine. Coadministration of COMPLERA and drugs that induce CYP3A may result in decreased plasma concentrations of rilpivirine and loss of virologic response and possible resistance. Coadministration of COMPLERA and drugs that inhibit CYP3A may result in increased plasma concentrations of rilpivirine. Coadministration of COMPLERA with drugs that increase gastric pH may result in decreased plasma concentrations of rilpivirine and loss of virologic response and possible resistance to rilpivirine and to the class of NNRTIs.

Rilpivirine at a dose of 25 mg once daily is not likely to have a clinically relevant effect on the exposure of medicinal products metabolized by CYP enzymes.

The effects of coadministration of other drugs on the AUC, Cmax and Cmin values of rilpivirine are summarized in Table 6. The effect of coadministration of rilpivirine on the AUC, Cmax and Cmin values of other drugs are summarized in Table 7.

Single-dose administration of COMPLERA tablet to healthy subjects under fasted conditions provided approximately 25% higher exposure of rilpivirine compared to administration of EMTRIVA capsules (200 mg) plus Edurant tablets (25 mg) plus VIREAD tablets (300 mg), while exposures of emtricitabine and tenofovir were comparable (N=15).

Emtricitabine: Following oral administration, emtricitabine is absorbed with peak plasma concentrations occurring at 1–2 hours post-dose. Following multiple dose oral administration of EMTRIVA to 20 HIV-1-infected subjects, the mean steady-state plasma emtricitabine Cmax was 1.8 ± 0.7 µg per mL and the AUC over a 24-hour dosing interval was 10.0 ± 3.1 µg∙hr per mL. The mean steady state plasma trough concentration at 24 hours post-dose was 0.09 µg per mL. The mean absolute bioavailability of EMTRIVA capsules was 93%. Less than 4% of emtricitabine binds to human plasma proteins in vitro over the range of 0.02 to 200 µg per mL. Following administration of radiolabelled emtricitabine, approximately 86% is recovered in the urine, approximately 14% in the feces and 13% is recovered as metabolites in the urine. The metabolites of emtricitabine include 3′-sulfoxide diastereomers (approximately 9% of the dose) and the glucuronic acid conjugate (approximately 4% of the dose). Emtricitabine is eliminated by a combination of glomerular filtration and active tubular secretion with a renal clearance in adults with creatinine clearance >80 mL per minute of 213 ± 89 mL per minute (mean ± SD). The plasma emtricitabine half-life is approximately 10 hours.

Rilpivirine: The pharmacokinetic properties of rilpivirine have been evaluated in adult healthy subjects and in adult antiretroviral treatment-naive HIV-1-infected subjects. Exposure to rilpivirine was generally lower in HIV-1-infected subjects than in healthy subjects. After oral administration, the Cmax of rilpivirine is achieved within 4–5 hours. The absolute bioavailability of rilpivirine is unknown.

Microbiology

Antiviral Activity

Emtricitabine, Rilpivirine, and Tenofovir Disoproxil Fumarate: The triple combination of emtricitabine, rilpivirine, and tenofovir was not antagonistic in cell culture.

Emtricitabine: The antiviral activity of emtricitabine against laboratory and clinical isolates of HIV-1 was assessed in lymphoblastoid cell lines, the MAGI-CCR5 cell line, and peripheral blood mononuclear cells. The 50% effective concentration (EC50) values for emtricitabine were in the range of 0.0013–0.64 µM. Emtricitabine displayed antiviral activity in cell culture against HIV-1 clades A, B, C, D, E, F, and G (EC50 values ranged from 0.007–0.075 µM) and showed strain specific activity against HIV-2 (EC50 values ranged from 0.007–1.5 µM). In drug combination studies of emtricitabine with nucleoside reverse transcriptase inhibitors (abacavir, lamivudine, stavudine, tenofovir, zidovudine), non-nucleoside reverse transcriptase inhibitors (delavirdine, efavirenz, nevirapine, and rilpivirine), and protease inhibitors (amprenavir, nelfinavir, ritonavir, saquinavir), no antagonistic effects were observed.

Rilpivirine: Rilpivirine exhibited activity against laboratory strains of wild-type HIV-1 in an acutely infected T-cell line with a median EC50 value for HIV-1IIIB of 0.73 nM. Rilpivirine demonstrated limited activity in cell culture against HIV-2 with a median EC50 value of 5220 nM (range 2510 to 10830 nM). Rilpivirine demonstrated antiviral activity against a broad panel of HIV-1 group M (subtype A, B, C, D, F, G, H) primary isolates with EC50 values ranging from 0.07 to 1.01 nM and was less active against group O primary isolates with EC50 values ranging from 2.88 to 8.45 nM. The antiviral activity of rilpivirine was not antagonistic when combined with the NNRTIs efavirenz, etravirine or nevirapine; N(t)RTIs abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir or zidovudine; the PIs amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir or tipranavir; the fusion inhibitor enfuvirtide; the CCR5 co-receptor antagonist maraviroc or the integrase strand transfer inhibitor raltegravir.

Tenofovir Disoproxil Fumarate: The antiviral activity of tenofovir against laboratory and clinical isolates of HIV-1 was assessed in lymphoblastoid cell lines, primary monocyte/macrophage cells and peripheral blood lymphocytes. The EC50 values for tenofovir were in the range of 0.04–8.5 µM. Tenofovir displayed antiviral activity in cell culture against HIV-1 clades A, B, C, D, E, F, G, and O (EC50 values ranged from 0.5–2.2 µM) and showed strain specific activity against HIV-2 (EC50 values ranged from 1.6 µM–5.5 µM). In drug combination studies of tenofovir with NRTIs (abacavir, didanosine, emtricitabine, lamivudine, stavudine, and zidovudine), NNRTIs (delavirdine, efavirenz, nevirapine, and rilpivirine), and PIs (amprenavir, indinavir, nelfinavir, ritonavir, saquinavir), no antagonistic effects were observed.

Resistance

In Cell Culture

Emtricitabine and Tenofovir Disoproxil Fumarate: HIV-1 isolates with reduced susceptibility to emtricitabine or tenofovir have been selected in cell culture. Reduced susceptibility to emtricitabine was associated with M184V/I substitutions in HIV-1 RT. HIV-1 isolates selected by tenofovir expressed a K65R substitution in HIV-1 RT and showed a 2–4 fold reduction in susceptibility to tenofovir.

Rilpivirine: Rilpivirine-resistant strains were selected in cell culture starting from wild-type HIV-1 of different origins and subtypes as well as NNRTI resistant HIV-1. The frequently observed amino acid substitutions that emerged and conferred decreased phenotypic susceptibility to rilpivirine included: L100I, K101E, V106I and A, V108I, E138K and G, Q, R, V179F and I, Y181C and I, V189I, G190E, H221Y, F227C and M230I and L.

In HIV-1-Infected Subjects With No Antiretroviral Treatment History

In the Week 96 pooled resistance analysis for subjects receiving rilpivirine or efavirenz in combination with emtricitabine/tenofovir DF in the Phase 3 clinical trials C209 and C215, the emergence of resistance was greater among subjects' viruses in the rilpivirine plus emtricitabine/tenofovir DF arm compared to the efavirenz plus emtricitabine/tenofovir DF arm and was dependent on baseline viral load. In the pooled resistance analysis, 61% (47/77) of the subjects who qualified for resistance analysis (resistance analysis subjects) in the rilpivirine plus emtricitabine/tenofovir DF arm had virus with genotypic and/or phenotypic resistance to rilpivirine compared to 42% (18/43) of the resistance analysis subjects in the efavirenz plus emtricitabine/tenofovir DF arm who had genotypic and/or phenotypic resistance to efavirenz. Moreover, genotypic and/or phenotypic resistance to emtricitabine or tenofovir emerged in viruses from 57% (44/77) of the resistance analysis subjects in the rilpivirine arm compared to 26% (11/43) in the efavirenz arm.

Emerging NNRTI substitutions in the rilpivirine resistance analysis of subjects' viruses included V90I, K101E/P/T, E138K/A/Q/G, V179I/L, Y181C/I, V189I, H221Y, F227C/L and M230L, which were associated with a rilpivirine phenotypic fold change range of 2.6–621. The E138K substitution emerged most frequently during rilpivirine treatment commonly in combination with the M184I substitution. The emtricitabine and lamivudine resistance-associated substitutions M184I or V and NRTI resistance-associated substitutions (K65R/N, A62V, D67N/G, K70E, Y115F, K219E/R) emerged more frequently in the rilpivirine resistance analysis subjects than in efavirenz resistance analysis subjects (See Table 8).

NNRTI- and NRTI-resistance substitutions emerged less frequently in the resistance analysis of viruses from subjects with baseline viral loads of ≤100,000 copies/mL compared to viruses from subjects with baseline viral loads of >100,000 copies/mL: 23% (10/44) compared to 77% (34/44) of NNRTI-resistance substitutions and 20% (9/44) compared to 80% (35/44) of NRTI-resistance substitutions. This difference was also observed for the individual emtricitabine/lamivudine and tenofovir resistance substitutions: 22% (9/41) compared to 78% (32/41) for M184I/V and 0% (0/8) compared to 100% (8/8) for K65R/N. Additionally, NNRTI and/or NRTI-resistance substitutions emerged less frequently in the resistance analysis of the viruses from subjects with baseline CD4+ cell counts ≥200 cells/mm3 compared to the viruses from subjects with baseline CD4+ cell counts <200 cells/mm3: 32% (14/44) compared to 68% (30/44) of NNRTI-resistance substitutions and 27% (12/44) compared to 73% (32/44) of NRTI-resistance substitutions.

Nonclinical Toxicology

There is limited information regarding Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate Nonclinical Toxicology in the drug label.

Clinical Studies

There is limited information regarding Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate Clinical Studies in the drug label.

How Supplied

There is limited information regarding Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate How Supplied in the drug label.

Storage

There is limited information regarding Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate Storage in the drug label.

Images

Drug Images

{{#ask: Page Name::Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}

Package and Label Display Panel

{{#ask: Label Page::Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}

Patient Counseling Information

There is limited information regarding Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate Patient Counseling Information in the drug label.

Precautions with Alcohol

Alcohol-Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

Brand Names

There is limited information regarding Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate Brand Names in the drug label.

Look-Alike Drug Names

There is limited information regarding Emtricitabine, Rilpivirine Hydrochloride, And Tenofovir Disoproxil Fumarate Look-Alike Drug Names in the drug label.

Drug Shortage Status

Price

References

The contents of this FDA label are provided by the National Library of Medicine.