Enterovirus 68

Revision as of 13:50, 8 September 2014 by Alejandro Lemor (talk | contribs)
Jump to navigation Jump to search

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Alejandro Lemor, M.D. [2];João André Alves Silva, M.D. [3]

Enterovirus 68 Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Risk Factors

Differentiating Enterovirus 68 from other Diseases

Epidemiology and Demographics

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Ultrasound

Chest X Ray

CT Scan

MRI

Treatment

Medical Therapy

Surgery

Primary Prevention

Future or Investigational Therapies

Case Studies

Case #1

Enterovirus 68 On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Enterovirus 68

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Enterovirus 68

CDC on Enterovirus 68

Enterovirus 68 in the news

Blogs on Enterovirus 68

Directions to Hospitals Treating Enterovirus 68

Risk calculators and risk factors for Enterovirus 68

Synonyms and keywords: EV68, EV-68, EV-D68, HRV-87, human rhinovirus type 87


Overview

Life Cycle

Enterovirus 68 is acid labile and prefers a lower temperature similar to rhinovirus 87, whereas other enteroviruses are more acid stable and can survive at higher temperatures. In a study on the effect of acidity and temperature on viral growth, 5 clinical isolates were tested for acid stability as compared to EV68 FERMON strain. 10 folds serial dilutions of viral samples were inoculated onto 96 culture plates. They were then incubated at a temperature of 33 or 37° C, in an atmosphere of 5% CO2. They were then observed for 7 days for any cytopathic effects. All strains exhibited a 100 to 1000 fold reduction in the infectivity titres following the incubation for 1 hour in pH 3 buffer. In addition, each of EV68 strains grew to a lower titer at 37 °C than at 33 °C.[1][2] It is due to this survivability at lower temperatures and higher pH that most strains are isolated from respiratory specimens. Classically enteroviruses have a predominance of occurrence in summer-fall season and outbreaks occur in cycles spaced out by several years. EV68 also shows a similar seasonal distribution, with most cases occurring within and sometimes in the later part of the typical enterovirus season.[3]


References

  1. Oberste, MS.; Maher, K.; Schnurr, D.; Flemister, MR.; Lovchik, JC.; Peters, H.; Sessions, W.; Kirk, C.; Chatterjee, N. (2004). "Enterovirus 68 is associated with respiratory illness and shares biological features with both the enteroviruses and the rhinoviruses". J Gen Virol. 85 (Pt 9): 2577–84. doi:10.1099/vir.0.79925-0. PMID 15302951. Unknown parameter |month= ignored (help)
  2. Blomqvist, S.; Savolainen, C.; Råman, L.; Roivainen, M.; Hovi, T. (2002). "Human rhinovirus 87 and enterovirus 68 represent a unique serotype with rhinovirus and enterovirus features". J Clin Microbiol. 40 (11): 4218–23. PMID 12409401. Unknown parameter |month= ignored (help)
  3. "Clusters of acute respiratory illness associated with human enterovirus 68--Asia, Europe, and United States, 2008-2010". MMWR Morb Mortal Wkly Rep. 60 (38): 1301–4. 2011. PMID 21956405. Unknown parameter |month= ignored (help)