Cyclosporiasis pathophysiology
Cyclosporiasis Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Cyclosporiasis pathophysiology On the Web |
American Roentgen Ray Society Images of Cyclosporiasis pathophysiology |
Risk calculators and risk factors for Cyclosporiasis pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: João André Alves Silva, M.D. [2]
Overview
Fresh produce and water can serve as vehicles for transmission and the sporulated oocysts are ingested (in contaminated food or water). The oocysts excyst in the gastrointestinal tract, freeing the sporozoites which invade the epithelial cells of the small intestine.
Pathogenesis
- When freshly passed in stools, the oocyst is not infective (thus, direct fecal-oral transmission cannot occur; this differentiates Cyclospora from another important coccidian parasite, Cryptosporidium).
- In the environment, sporulation occurs after days or weeks at temperatures between 22°C to 32°C, resulting in division of the sporont into two sporocysts, each containing two elongate sporozoites.
- The oocysts excyst in the gastrointestinal tract, freeing the sporozoites which invade the epithelial cells of the small intestine.
- Inside the cells they undergo asexual multiplication and sexual development to mature into oocysts, which will be shed in stools.[1]
Various chemicals in the host's gastrointestinal tract cause the oocysts to excyst and release sporozoites; generally, two are observed per oocyst. After these sporozoites invade the epithelial cells, they undergo merogony, a form of asexual reproduction that results in many daughter merozoites. These daughter cells may either infect new host cells and initiate yet another round of merogony, or they can take on a sexual track via gametogony: daughter merozoites become male macrogamonts — which form many microgametes — and female macrogamonts. After fertilization has occurred via male microgamete fusion with female macrogamont, the zygote matures into an oocyst and ruptures the host cell, from which point it is passed with the stool. The oocysts that are passed are not, however, immediately infectious. Sporulation can take anywhere from one to several weeks, meaning that person-to-person transmission is not a likely problem. This differentiates C. cayentanensis from Cryptosporidium parvum — a closely related organism that causes a similar disease — since C. parvum oocysts are immediately infectious upon release from the host.
Life Cycle
The protozoan lives out its lifecycle intracellularly within the host’s epithelial cells and gastrointestinal tract. Infection is transmitted through the oral-fecal route, and begins when a person ingests oocysts in fecally contaminated food or water. Various chemicals in the hosts gastrointestinal tract cause the oocysts to excyst and release sporozoites; generally, two are observed per oocyst. After these sporozoites invade the epithelial cells, they undergo merogony, a form of asexual reproduction that results in many daughter merozoites. These daughter cells may either infect new host cells and initiate yet another round of merogony, or they can take on a sexual track via gametogony: daughter merozoites become male macrogamonts — which form many microgametes — and female macrogamonts. After fertilization has occurred via male microgamete fusion with female macrogamont, the zygote matures into an oocyst and ruptures the host cell, from which point it is passed with the stool. The oocysts that are passed are not, however, immediately infectious. Sporulation can take anywhere from one to several weeks, meaning that person-to-person transmission is not a likely problem. This differentiates C. cayetanensis from Cryptosporidium parvum — a closely related organism that causes a similar disease — since C. parvum oocysts are immediately infectious upon release from the host.
Transmission
The protozoan lives out its lifecycle intracellularly within the host’s epithelial cells and gastrointestinal tract. Infection is transmitted through the oral-fecal route, and begins when a person ingests oocysts in fecally contaminated food or water.
- Fresh produce and water can serve as vehicles for transmission and the sporulated oocysts are ingested (in contaminated food or water).