Sunitinib
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Gloria Picoy [2]
Disclaimer
WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.
Black Box Warning
HEPATOTOXICITY
See full prescribing information for complete Boxed Warning.
Hepatotoxicity has been observed in clinical trials and post-marketing experience. This hepatotoxicity may be severe, and deaths have been reported.
|
Overview
Sunitinib is a tyrosine kinase inhibitor that is FDA approved for the treatment of gastrointestinal stromal tumor (GIST) after disease progression on or intolerance to imatinib mesylate, advanced renal cell carcinoma (RCC) and Progressive, well-differentiated pancreatic neuroendocrine tumors (pNET) in patients with unresectable locally advanced or metastatic disease. There is a Black Box Warning for this drug as shown here. Common adverse reactions include fatigue, asthenia, fever, diarrhea, nausea, mucositis/stomatitis, vomiting, dyspepsia, abdominal pain, constipation, hypertension, peripheral edema, rash, hand-foot syndrome, skin discoloration, dry skin, hair color changes, altered taste, headache, back pain, arthralgia, extremity pain, cough, dyspnea, anorexia and bleeding.
Adult Indications and Dosage
FDA-Labeled Indications and Dosage (Adult)
Gastrointestinal Stromal Tumor (GIST)
- Sunitinib is indicated for the treatment of gastrointestinal stromal tumor after disease progression on or intolerance to imatinib mesylate.
- Dosage: one 50 mg oral dose taken once daily, on a schedule of 4 weeks on treatment followed by 2 weeks off (Schedule 4/2).
- Sunitinib malate may be taken with or without food
Advanced Renal Cell Carcinoma (RCC)
- Sunitinib malate is indicated for the treatment of advanced renal cell carcinoma.
- Dosage: one 50 mg oral dose taken once daily, on a schedule of 4 weeks on treatment followed by 2 weeks off (Schedule 4/2).
- Sunitinib malate may be taken with or without food
Advanced Pancreatic Neuroendocrine Tumors (pNET)
- Sunitinib malate is indicated for the treatment of progressive, well-differentiated pancreatic neuroendocrine tumors in patients with unresectable locally advanced or metastatic disease.
- Dosage: 37.5 mg taken orally once daily continuously without a scheduled off-treatment period.
- Sunitinib malate may be taken with or without food.
Off-Label Use and Dosage (Adult)
Guideline-Supported Use
There is limited information regarding Off-Label Guideline-Supported Use of Sunitinib in adult patients.
Non–Guideline-Supported Use
There is limited information regarding Off-Label Non–Guideline-Supported Use of Sunitinib in adult patients.
Pediatric Indications and Dosage
FDA-Labeled Indications and Dosage (Pediatric)
There is limited information regarding Sunitinib FDA-Labeled Indications and Dosage (Pediatric) in the drug label.
Off-Label Use and Dosage (Pediatric)
Guideline-Supported Use
There is limited information regarding Off-Label Guideline-Supported Use of Sunitinib in pediatric patients.
Non–Guideline-Supported Use
There is limited information regarding Off-Label Non–Guideline-Supported Use of Sunitinib in pediatric patients.
Contraindications
None
Warnings
HEPATOTOXICITY
See full prescribing information for complete Boxed Warning.
Hepatotoxicity has been observed in clinical trials and post-marketing experience. This hepatotoxicity may be severe, and deaths have been reported.
|
Hepatotoxicity
Sunitinib malate has been associated with hepatotoxicity, which may result in liver failure or death. Liver failure has been observed in clinical trials (7/2281 [0.3%]) and post-marketing experience. Liver failure signs include jaundice, elevated transaminases and/or hyperbilirubinemia in conjunction with encephalopathy, coagulopathy, and/or renal failure. Monitor liver function tests (ALT, AST, bilirubin) before initiation of treatment, during each cycle of treatment, and as clinically indicated. SUTENT should be interrupted for Grade 3 or 4 drug-related hepatic adverse events and discontinued if there is no resolution. Do not restart SUTENT if patients subsequently experience severe changes in liver function tests or have other signs and symptoms of liver failure.
Safety in patients with ALT or AST >2.5 × ULN or, if due to liver metastases, >5.0 × ULN has not been established.
Pregnancy
Sunitinib malate can cause fetal harm when administered to a pregnant woman. As angiogenesis is a critical component of embryonic and fetal development, inhibition of angiogenesis following administration of SUTENT should be expected to result in adverse effects on pregnancy. In animal reproductive studies in rats and rabbits, sunitinib was teratogenic, embryotoxic, and fetotoxic. There are no adequate and well-controlled studies of SUTENT in pregnant women. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to a fetus. Women of childbearing potential should be advised to avoid becoming pregnant while receiving treatment with SUTENT.
Left Ventricular Dysfunction
In the presence of clinical manifestations of congestive heart failure (CHF), discontinuation of SUTENT is recommended. The dose of SUTENT should be interrupted and/or reduced in patients without clinical evidence of CHF but with an ejection fraction <50% and >20% below baseline.
Cardiovascular events, including heart failure, myocardial disorders and cardiomyopathy, some of which were fatal, have been reported through post-marketing experience. For GIST and RCC, more patients treated with SUTENT experienced decline in left ventricular ejection fraction (LVEF) than patients receiving either placebo or interferon-α (IFN-α). In the double-blind treatment phase of GIST Study A, 22/209 patients (11%) on SUTENT and 3/102 patients (3%) on placebo had treatment-emergent LVEF values below the lower limit of normal (LLN). Nine of 22 GIST patients on SUTENT with LVEF changes recovered without intervention. Five patients had documented LVEF recovery following intervention (dose reduction: one patient; addition of antihypertensive or diuretic medications: four patients). Six patients went off study without documented recovery. Additionally, three patients on SUTENT had Grade 3 reductions in left ventricular systolic function to LVEF <40%; two of these patients died without receiving further study drug. No GIST patients on placebo had Grade 3 decreased LVEF. In the double-blind treatment phase of GIST Study A, 1 patient on SUTENT and 1 patient on placebo died of diagnosed heart failure; 2 patients on SUTENT and 2 patients on placebo died of treatment-emergent cardiac arrest.
In the treatment-naïve RCC study, 103/375 (27%) and 54/360 (15%) patients on SUTENT and IFN-α, respectively, had an LVEF value below the LLN. Twenty-six patients on SUTENT (7%) and seven on IFN-α (2%) experienced declines in LVEF to >20% below baseline and to below 50%. Left ventricular dysfunction was reported in four patients (1%) and CHF in two patients (<1%) who received SUTENT.
In the Phase 3 pNET study, cardiac failure leading to death was reported in 2/83 (2%) patients on SUTENT and no patients on placebo.
Patients who presented with cardiac events within 12 months prior to SUTENT administration, such as myocardial infarction (including severe/unstable angina), coronary/peripheral artery bypass graft, symptomatic CHF, cerebrovascular accident or transient ischemic attack, or pulmonary embolism were excluded from SUTENT clinical studies. It is unknown whether patients with these concomitant conditions may be at a higher risk of developing drug-related left ventricular dysfunction. Physicians are advised to weigh this risk against the potential benefits of the drug. These patients should be carefully monitored for clinical signs and symptoms of CHF while receiving SUTENT. Baseline and periodic evaluations of LVEF should also be considered while these patients are receiving SUTENT. In patients without cardiac risk factors, a baseline evaluation of ejection fraction should be considered.
QT Interval Prolongation and Torsade de Pointes
Sunitinib malate has been shown to prolong the QT interval in a dose dependent manner, which may lead to an increased risk for ventricular arrhythmias including Torsade de Pointes. Torsade de Pointes has been observed in <0.1% of SUTENT-exposed patients.
Sunitinib malate should be used with caution in patients with a history of QT interval prolongation, patients who are taking antiarrhythmics, or patients with relevant pre-existing cardiac disease, bradycardia, or electrolyte disturbances. When using SUTENT, periodic monitoring with on-treatment electrocardiograms and electrolytes (magnesium, potassium) should be considered. Concomitant treatment with strong CYP3A4 inhibitors, which may increase sunitinib plasma concentrations, should be used with caution and dose reduction of SUTENT should be considered [see DOSAGE AND ADMINISTRATION (2.2)].
Hypertension
Patients should be monitored for hypertension and treated as needed with standard anti-hypertensive therapy. In cases of severe hypertension, temporary suspension of SUTENT is recommended until hypertension is controlled.
Of patients receiving SUTENT for treatment-naïve RCC, 127/375 patients (34%) receiving SUTENT compared with 13/360 patients (4%) on IFN-α experienced hypertension. Grade 3 hypertension was observed in 50/375 treatment-naïve RCC patients (13%) on SUTENT compared to 1/360 patients (<1%) on IFN-α. While all-grade hypertension was similar in GIST patients on SUTENT compared to placebo, Grade 3 hypertension was reported in 9/202 GIST patients on SUTENT (4%), and none of the GIST patients on placebo. Of patients receiving SUTENT in the Phase 3 pNET study, 22/83 patients (27%) on SUTENT and 4/82 patients (5%) on placebo experienced hypertension. Grade 3 hypertension was reported in 8/83 pNET patients (10%) on SUTENT, and 1/82 patient (1%) on placebo. No Grade 4 hypertension was reported. SUTENT dosing was reduced or temporarily delayed for hypertension in 21/375 patients (6%) on the treatment-naive RCC study and 7/83 pNET patients (8%). Four treatment-naïve RCC patients, including one with malignant hypertension, one patient with pNET, and no GIST patients discontinued treatment due to hypertension. Severe hypertension (>200 mmHg systolic or 110 mmHg diastolic) occurred in 8/202 GIST patients on SUTENT (4%), 1/102 GIST patients on placebo (1%), in 32/375 treatment-naïve RCC patients (9%) on SUTENT, in 3/360 patients (1%) on IFN-α, and in 8/80 pNET patients (10%) on SUTENT and 2/76 pNET patients (3%) on placebo.
Hemorrhagic Events
Hemorrhagic events reported through post-marketing experience, some of which were fatal, have included GI, respiratory, tumor, urinary tract and brain hemorrhages. In patients receiving SUTENT in a clinical trial for treatment-naïve RCC, 140/375 patients (37%) had bleeding events compared with 35/360 patients (10%) receiving IFN-α. Bleeding events occurred in 37/202 patients (18%) receiving SUTENT in the double-blind treatment phase of GIST Study A, compared to 17/102 patients (17%) receiving placebo. Epistaxis was the most common hemorrhagic adverse event reported. Bleeding events, excluding epistaxis, occurred in 18/83 patients (22%) receiving SUTENT in the Phase 3 pNET study, compared to 8/82 patients (10%) receiving placebo. Epistaxis was reported in 17/83 patients (20%) receiving SUTENT for pNET and 4 patients (5%) receiving placebo. Less common bleeding events in GIST, RCC and pNET patients included rectal, gingival, upper gastrointestinal, genital, and wound bleeding. In the double-blind treatment phase of GIST Study A, 14/202 patients (7%) receiving SUTENT and 9/102 patients (9%) on placebo had Grade 3 or 4 bleeding events. In addition, one patient in GIST Study A taking placebo had a fatal gastrointestinal bleeding event during Cycle 2. Most events in RCC patients were Grade 1 or 2; there was one Grade 5 event of gastric bleed in a treatment-naïve patient. In the pNET study, 1/83 patients (1%) receiving SUTENT had Grade 3 epistaxis, and no patients had other Grade 3 or 4 bleeding events. In pNET patients receiving placebo, 3/82 patients (4%) had Grade 3 or 4 bleeding events.
Tumor-related hemorrhage has been observed in patients treated with SUTENT. These events may occur suddenly, and in the case of pulmonary tumors may present as severe and life-threatening hemoptysis or pulmonary hemorrhage. Cases of pulmonary hemorrhage, some with a fatal outcome, have been observed in clinical trials and have been reported in post-marketing experience in patients treated with SUTENT for MRCC, GIST and metastatic lung cancer. SUTENT is not approved for use in patients with lung cancer. Treatment-emergent Grade 3 and 4 tumor hemorrhage occurred in 5/202 patients (3%) with GIST receiving SUTENT on Study A. Tumor hemorrhages were observed as early as Cycle 1 and as late as Cycle 6. One of these five patients received no further drug following tumor hemorrhage. None of the other four patients discontinued treatment or experienced dose delay due to tumor hemorrhage. No patients with GIST in the Study A placebo arm were observed to undergo intratumoral hemorrhage. Clinical assessment of these events should include serial complete blood counts (CBCs) and physical examinations.
Serious, sometimes fatal gastrointestinal complications including gastrointestinal perforation, have occurred rarely in patients with intra-abdominal malignancies treated with SUTENT.
Osteonecrosis of the Jaw (ONJ)
ONJ has been observed in clinical trials and has been reported in post-marketing experience in patients treated with sunitinib. Concomitant exposure to other risk factors, such as bisphosphonates or dental disease, may increase the risk of osteonecrosis of the jaw.
Tumor Lysis Syndrome (TLS)
Cases of TLS, some fatal, have been observed in clinical trials and have been reported in post-marketing experience, primarily in patients with RCC or GIST treated with SUTENT. Patients generally at risk of TLS are those with high tumor burden prior to treatment. These patients should be monitored closely and treated as clinically indicated.
Thyroid Dysfunction
Baseline laboratory measurement of thyroid function is recommended and patients with hypothyroidism or hyperthyroidism should be treated as per standard medical practice prior to the start of SUTENT treatment. All patients should be observed closely for signs and symptoms of thyroid dysfunction, including hypothyroidism, hyperthyroidism, and thyroiditis, on SUTENT treatment. Patients with signs and/or symptoms suggestive of thyroid dysfunction should have laboratory monitoring of thyroid function performed and be treated as per standard medical practice.
Treatment-emergent acquired hypothyroidism was noted in eight GIST patients (4%) on SUTENT versus one (1%) on placebo. Hypothyroidism was reported as an adverse reaction in sixty-one patients (16%) on SUTENT in the treatment-naïve RCC study and in three patients (1%) in the IFN-α arm. Hypothyroidism was reported as an adverse reaction in 6/83 patients (7%) on SUTENT in the Phase 3 pNET study and in 1/82 patients (1%) in the placebo arm.
Cases of hyperthyroidism, some followed by hypothyroidism, have been reported in clinical trials and through post-marketing experience.
Wound Healing
Cases of impaired wound healing have been reported during SUTENT therapy. Temporary interruption of SUTENT therapy is recommended for precautionary reasons in patients undergoing major surgical procedures. There is limited clinical experience regarding the timing of reinitiation of therapy following major surgical intervention. Therefore, the decision to resume SUTENT therapy following a major surgical intervention should be based upon clinical judgment of recovery from surgery.
Proteinuria
Proteinuria and nephrotic syndrome have been reported. Some of these cases have resulted in renal failure and fatal outcomes. Monitor patients for the development or worsening of proteinuria. Perform baseline and periodic urinalyses during treatment, with follow up measurement of 24-hour urine protein as clinically indicated. Interrupt SUTENT and dose reduce for 24-hour urine protein ≥ 3 grams. Discontinue SUTENT for patients with nephrotic syndrome or repeat episodes of urine protein ≥ 3 grams despite dose reductions. The safety of continued SUTENT treatment in patients with moderate to severe proteinuria has not been systematically evaluated.
Dermatologic Toxicities
Severe cutaneous reactions have been reported, including cases of erythema multiforme (EM), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN), some of which were fatal. If signs or symptoms of SJS, TEN, or EM (e.g., progressive skin rash often with blisters or mucosal lesions) are present, SUTENT treatment should be discontinued. If a diagnosis of SJS or TEN is suspected, SUTENT treatment must not be re-started.
Necrotizing fasciitis, including fatal cases, has been reported in patients treated with Sutent, including of the perineum and secondary to fistula formation. Discontinue Sutent in patients who develop necrotizing fasciitis.
Adrenal Function
Physicians prescribing SUTENT are advised to monitor for adrenal insufficiency in patients who experience stress such as surgery, trauma or severe infection.
Adrenal toxicity was noted in non-clinical repeat dose studies of 14 days to 9 months in rats and monkeys at plasma exposures as low as 0.7 times the AUC observed in clinical studies. Histological changes of the adrenal gland were characterized as hemorrhage, necrosis, congestion, hypertrophy and inflammation. In clinical studies, CT/MRI obtained in 336 patients after exposure to one or more cycles of SUTENT demonstrated no evidence of adrenal hemorrhage or necrosis. ACTH stimulation testing was performed in approximately 400 patients across multiple clinical trials of SUTENT. Among patients with normal baseline ACTH stimulation testing, one patient developed consistently abnormal test results during treatment that are unexplained and may be related to treatment with SUTENT. Eleven additional patients with normal baseline testing had abnormalities in the final test performed, with peak cortisol levels of 12–16.4 mcg/dL (normal >18 mcg/dL) following stimulation. None of these patients were reported to have clinical evidence of adrenal insufficiency.
Laboratory Tests
CBCs with platelet count and serum chemistries including phosphate should be performed at the beginning of each treatment cycle for patients receiving treatment with SUTENT.
Adverse Reactions
Clinical Trials Experience
The data described below reflect exposure to SUTENT in 660 patients who participated in the double-blind treatment phase of a placebo-controlled trial (n=202) for the treatment of GIST, an active-controlled trial (n=375) for the treatment of RCC or a placebo-controlled trial (n=83) for the treatment of pNET. The GIST and RCC patients received a starting oral dose of 50 mg daily on Schedule 4/2 in repeated cycles, and the pNET patients received a starting oral dose of 37.5 mg daily without scheduled off-treatment periods.
The most common adverse reactions (≥20%) in patients with GIST, RCC or pNET are fatigue, asthenia, fever, diarrhea, nausea, mucositis/stomatitis, vomiting, dyspepsia, abdominal pain, constipation, hypertension, peripheral edema, rash, hand-foot syndrome, skin discoloration, dry skin, hair color changes, altered taste, headache, back pain, arthralgia, extremity pain, cough, dyspnea, anorexia, and bleeding. The potentially serious adverse reactions are hepatotoxicity, left ventricular dysfunction, QT interval prolongation, hemorrhage, hypertension, thyroid dysfunction, and adrenal function. Other adverse reactions occurring in GIST, RCC and pNET studies are described below.
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Adverse Reactions in GIST Study A
Median duration of blinded study treatment was two cycles for patients on SUTENT (mean 3.0, range 1–9) and one cycle (mean 1.8, range 1–6) for patients on placebo at the time of the interim analysis. Dose reductions occurred in 23 patients (11%) on SUTENT and none on placebo. Dose interruptions occurred in 59 patients (29%) on SUTENT and 31 patients (30%) on placebo. The rates of treatment-emergent, non-fatal adverse reactions resulting in permanent discontinuation were 7% and 6% in the SUTENT and placebo groups, respectively.
Most treatment-emergent adverse reactions in both study arms were Grade 1 or 2 in severity. Grade 3 or 4 treatment-emergent adverse reactions were reported in 56% versus 51% of patients on SUTENT versus placebo, respectively, in the double-blind treatment phase of the trial. Table 1 compares the incidence of common (≥10%) treatment-emergent adverse reactions for patients receiving SUTENT and reported more commonly in patients receiving SUTENT than in patients receiving placebo.
In the double-blind treatment phase of GIST Study A, oral pain other than mucositis/stomatitis occurred in 12 patients (6%) on SUTENT versus 3 (3%) on placebo. Hair color changes occurred in 15 patients (7%) on SUTENT versus 4 (4%) on placebo. Alopecia was observed in 10 patients (5%) on SUTENT versus 2 (2%) on placebo.
Table 2 provides common (≥10%) treatment-emergent laboratory abnormalities.
After an interim analysis, the study was unblinded, and patients on the placebo arm were given the opportunity to receive open-label SUTENT treatment [see CLINICAL STUDIES (14.1)]. For 241 patients randomized to the SUTENT arm, including 139 who received SUTENT in both the double-blind and open-label treatment phases, the median duration of SUTENT treatment was 6 cycles (mean 8.5, range 1 – 44). For the 255 patients who ultimately received open-label SUTENT treatment, median duration of study treatment was 6 cycles (mean 7.8, range 1 – 37) from the time of the unblinding. A total of 118 patients (46%) required dosing interruptions, and a total of 72 patients (28%) required dose reductions. The incidence of treatment-emergent adverse reactions resulting in permanent discontinuation was 20%. The most common Grade 3 or 4 treatment-related adverse reactions experienced by patients receiving SUTENT in the open-label treatment phase were fatigue (10%), hypertension (8%), asthenia (5%), diarrhea (5%), hand-foot syndrome (5%), nausea (4%), abdominal pain (3%), anorexia (3%), mucositis (2%), vomiting (2%), and hypothyroidism (2%).
Adverse Reactions in the Treatment-Naïve RCC Study
The as-treated patient population for the treatment-naive RCC study included 735 patients, 375 randomized to SUTENT and 360 randomized to IFN-α. The median duration of treatment was 11.1 months (range: 0.4 – 46.1) for SUTENT treatment and 4.1 months (range: 0.1 – 45.6) for IFN-α treatment. Dose interruptions occurred in 202 patients (54%) on SUTENT and 141 patients (39%) on IFN-α. Dose reductions occurred in 194 patients (52%) on SUTENT and 98 patients (27%) on IFN-α. Discontinuation rates due to adverse reactions were 20% for SUTENT and 24% for IFN-α. Most treatment-emergent adverse reactions in both study arms were Grade 1 or 2 in severity. Grade 3 or 4 treatment-emergent adverse reactions were reported in 77% versus 55% of patients on SUTENT versus IFN-α, respectively.
Table 3 compares the incidence of common (≥10%) treatment-emergent adverse reactions for patients receiving SUTENT versus IFN-α.
Treatment-emergent Grade 3/4 laboratory abnormalities are presented in Table 4.
Adverse Reactions in the Phase 3 pNET Study
The median number of days on treatment was 139 days (range 13–532 days) for patients on SUTENT and 113 days (range 1–614 days) for patients on placebo. Nineteen patients (23%) on SUTENT and 4 patients (5%) on placebo were on study for >1 year. Dose interruptions occurred in 25 patients (30%) on SUTENT and 10 patients (12%) on placebo. Dose reductions occurred in 26 patients (31%) on SUTENT and 9 patients (11%) on placebo. Discontinuation rates due to adverse reactions were 22% for SUTENT and 17% for placebo.
Most treatment-emergent adverse reactions in both study arms were Grade 1 or 2 in severity. Grade 3 or 4 treatment-emergent adverse reactions were reported in 54% versus 50% of patients on SUTENT versus placebo, respectively. Table 5 compares the incidence of common (≥10%) treatment-emergent adverse reactions for patients receiving SUTENT and reported more commonly in patients receiving SUTENT than in patients receiving placebo.
Table 6 provides common (≥10%) treatment-emergent laboratory abnormalities.
Venous Thromboembolic Events
Seven patients (3%) on SUTENT and none on placebo in the double-blind treatment phase of GIST Study A experienced venous thromboembolic events; five of the seven were Grade 3 deep venous thrombosis (DVT), and two were Grade 1 or 2. Four of these seven GIST patients discontinued treatment following first observation of DVT.
Thirteen (3%) patients receiving SUTENT for treatment-naïve RCC had venous thromboembolic events reported. Seven (2%) of these patients had pulmonary embolism, one was Grade 2 and six were Grade 4, and six (2%) patients had DVT, including three Grade 3. One patient was permanently withdrawn from SUTENT due to pulmonary embolism; dose interruption occurred in two patients with pulmonary embolism and one with DVT. In treatment-naïve RCC patients receiving IFN-α, six (2%) venous thromboembolic events occurred; one patient (<1%) experienced a Grade 3 DVT and five patients (1%) had pulmonary embolism, all Grade 4. One patient (1%) receiving SUTENT for pNET had a venous thromboembolic event reported compared to 5 patients (6%) receiving placebo. The SUTENT patient had Grade 2 thrombosis. Two placebo patients had DVT, one was Grade 3, two placebo patients had pulmonary embolism, one was Grade 3 and one was Grade 4, and one placebo patient had Grade 3 jugular thrombosis.
Reversible Posterior Leukoencephalopathy Syndrome
There have been reports (<1%), some fatal, of subjects presenting with seizures and radiological evidence of reversible posterior leukoencephalopathy syndrome (RPLS). Patients with seizures and signs/symptoms consistent with RPLS, such as hypertension, headache, decreased alertness, altered mental functioning, and visual loss, including cortical blindness should be controlled with medical management including control of hypertension. Temporary suspension of SUTENT is recommended; following resolution, treatment may be resumed at the discretion of the treating physician.
Pancreatic and Hepatic Function
If symptoms of pancreatitis or hepatic failure are present, patients should have SUTENT discontinued. Pancreatitis was observed in 5 (1%) patients receiving SUTENT for treatment-naïve RCC compared to 1 (<1%) patient receiving IFN-α. Pancreatitis was observed in 1 (1%) patient receiving SUTENT for pNET and 1 (1%) patient receiving placebo. Hepatotoxicity was observed in patients receiving SUTENT.
Postmarketing Experience
The following adverse reactions have been identified during post-approval use of SUTENT. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Blood and lymphatic system disorders
- Thrombotic microangiopathy; hemorrhage associated with thrombocytopenia1.
- Suspension of SUTENT is recommended; following resolution, treatment may be resumed at the discretion of the treating physician.
Gastrointestinal disorders
- Esophagitis
Hepatobiliary disorders
- Cholecystitis, particularly acalculous cholecystitis.
Immune system disorders
- Hypersensitivity reactions, including angioedema.
Infections and infestations
- Serious infection (with or without neutropenia)1.
- The infections most commonly observed with sunitinib treatment include respiratory, urinary tract, skin infections, sepsis/septic shock.
Musculoskeletal and connective tissue disorders
- Fistula formation, sometimes associated with tumor necrosis and/or regression; myopathy and/or rhabdomyolysis with or without acute renal failure1.
- Patients with signs or symptoms of muscle toxicity should be managed as per standard medical practice.
Renal and urinary disorders
- Renal impairment and/or failure
Respiratory disorders
- Pulmonary embolism
Skin and subcutaneous tissue disorders
- Pyoderma gangrenosum, including positive dechallenges.
Vascular disorders
- Arterial thromboembolic events.
- The most frequent events included cerebrovascular accident, transient ischemic attack and cerebral infarction.
Drug Interactions
CYP3A4 Inhibitors
Strong CYP3A4 inhibitors such as ketoconazole may increase sunitinib plasma concentrations. Selection of an alternate concomitant medication with no or minimal enzyme inhibition potential is recommended. Concurrent administration of SUTENT with the strong CYP3A4 inhibitor, ketoconazole, resulted in 49% and 51% increases in the combined (sunitinib + primary active metabolite) Cmax and AUC0–∞ values, respectively, after a single dose of SUTENT in healthy volunteers. Co-administration of SUTENT with strong inhibitors of the CYP3A4 family (e.g., ketoconazole, itraconazole, clarithromycin, atazanavir, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin, voriconazole) may increase sunitinib concentrations. Grapefruit may also increase plasma concentrations of sunitinib. A dose reduction for SUTENT should be considered when it must be co-administered with strong CYP3A4 inhibitors.
CYP3A4 Inducers
CYP3A4 inducers such as rifampin may decrease sunitinib plasma concentrations. Selection of an alternate concomitant medication with no or minimal enzyme induction potential is recommended. Concurrent administration of SUTENT with the strong CYP3A4 inducer, rifampin, resulted in a 23% and 46% reduction in the combined (sunitinib + primary active metabolite) Cmax and AUC0–∞ values, respectively, after a single dose of SUTENT in healthy volunteers. Co-administration of SUTENT with inducers of the CYP3A4 family (e.g., dexamethasone, phenytoin, carbamazepine, rifampin, rifabutin, rifapentin, phenobarbital, St. John's Wort) may decrease sunitinib concentrations. St. John's Wort may decrease sunitinib plasma concentrations unpredictably. Patients receiving SUTENT should not take St. John's Wort concomitantly. A dose increase for SUTENT should be considered when it must be co-administered with CYP3A4 inducers.
In Vitro Studies of CYP Inhibition and Induction
In vitro studies indicated that sunitinib does not induce or inhibit major CYP enzymes. The in vitro studies in human liver microsomes and hepatocytes of the activity of CYP isoforms CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4/5, and CYP4A9/11 indicated that sunitinib and its primary active metabolite are unlikely to have any clinically relevant drug-drug interactions with drugs that may be metabolized by these enzyme.
Use in Specific Populations
Pregnancy
Pregnancy Category (FDA): D Sunitinib malate can cause fetal harm when administered to a pregnant woman. As angiogenesis is a critical component of embryonic and fetal development, inhibition of angiogenesis following administration of SUTENT should be expected to result in adverse effects on pregnancy. In animal reproductive studies in rats and rabbits, sunitinib was teratogenic, embryotoxic, and fetotoxic. There are no adequate and well-controlled studies of SUTENT in pregnant women. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to a fetus. Women of childbearing potential should be advised to avoid becoming pregnant while receiving treatment with SUTENT.
Sunitinib was evaluated in pregnant rats (0.3, 1.5, 3.0, 5.0 mg/kg/day) and rabbits (0.5, 1, 5, 20 mg/kg/day) for effects on the embryo. Significant increases in the incidence of embryolethality and structural abnormalities were observed in rats at the dose of 5 mg/kg/day (approximately 5.5 times the systemic exposure [combined AUC of sunitinib + primary active metabolite] in patients administered the recommended daily doses [RDD]). Significantly increased embryolethality was observed in rabbits at 5 mg/kg/day while developmental effects were observed at ≥1 mg/kg/day (approximately 0.3 times the AUC in patients administered the RDD of 50 mg/day). Developmental effects consisted of fetal skeletal malformations of the ribs and vertebrae in rats. In rabbits, cleft lip was observed at 1 mg/kg/day and cleft lip and cleft palate were observed at 5 mg/kg/day (approximately 2.7 times the AUC in patients administered the RDD). Neither fetal loss nor malformations were observed in rats dosed at ≤3 mg/kg/day (approximately 2.3 times the AUC in patients administered the RDD).
Sunitinib (0.3, 1.0, 3.0 mg/kg/day) was evaluated in a pre- and postnatal development study in pregnant rats. Maternal body weight gains were reduced during gestation and lactation at doses ≥1 mg/kg/day but no maternal reproductive toxicity was observed at doses up to 3 mg/kg/day (approximately 2.3 times the AUC in patients administered the RDD). At the high dose of 3 mg/kg/day, reduced body weights were observed at birth and persisted for offspring of both sexes during the pre-weaning period and in males during post-weaning period. No other developmental toxicity was observed at doses up to 3 mg/kg/day (approximately 2.3 times the AUC in patients administered the RDD).
Pregnancy Category (AUS):
There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Sunitinib in women who are pregnant.
Labor and Delivery
There is no FDA guidance on use of Sunitinib during labor and delivery.
Nursing Mothers
Sunitinib and its metabolites are excreted in rat milk. In lactating female rats administered 15 mg/kg, sunitinib and its metabolites were extensively excreted in milk at concentrations up to 12-fold higher than in plasma. It is not known whether this drug or its primary active metabolite are excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from SUTENT, a decision should be made whether to discontinue nursing or to discontinue the drug taking into account the importance of the drug to the mother.
Pediatric Use
The safety and efficacy of SUTENT in pediatric patients have not been established.
Physeal dysplasia was observed in cynomolgus monkeys with open growth plates treated for ≥3 months (3 month dosing 2, 6, 12 mg/kg/day; 8 cycles of dosing 0.3, 1.5, 6.0 mg/kg/day) with sunitinib at doses that were >0.4 times the RDD based on systemic exposure (AUC). In developing rats treated continuously for 3 months (1.5, 5.0 and 15.0 mg/kg) or 5 cycles (0.3, 1.5, and 6.0 mg/kg/day), bone abnormalities consisted of thickening of the epiphyseal cartilage of the femur and an increase of fracture of the tibia at doses ≥5 mg/kg (approximately 10 times the RDD based on AUC). Additionally, caries of the teeth were observed in rats at >5 mg/kg. The incidence and severity of physeal dysplasia were dose-related and were reversible upon cessation of treatment; however, findings in the teeth were not. A no effect level was not observed in monkeys treated continuously for 3 months, but was 1.5 mg/kg/day when treated intermittently for 8 cycles. In rats the no effect level in bones was ≤2 mg/kg/day.
Geriatic Use
Of 825 GIST and RCC patients who received SUTENT on clinical studies, 277 (34%) were 65 and over. In the Phase 3 pNET study, 22 (27%) patients who received SUTENT were 65 and over. No overall differences in safety or effectiveness were observed between younger and older patients.
Gender
There is no FDA guidance on the use of Sunitinib with respect to specific gender populations.
Race
There is no FDA guidance on the use of Sunitinib with respect to specific racial populations.
Renal Impairment
No adjustment to the starting dose is required when administering SUTENT to patients with mild, moderate, and severe renal impairment. Subsequent dose modifications should be based on safety and tolerability. In patients with end-stage renal disease (ESRD) on hemodialysis, no adjustment to the starting dose is required. However, compared to subjects with normal renal function, the sunitinib exposure is 47% lower in subjects with ESRD on hemodialysis. Therefore, the subsequent doses may be increased gradually up to 2 fold based on safety and tolerability.
Hepatic Impairment
No dose adjustment to the starting dose is required when administering SUTENT to patients with Child-Pugh Class A or B hepatic impairment. Sunitinib and its primary metabolite are primarily metabolized by the liver. Systemic exposures after a single dose of SUTENT were similar in subjects with mild or moderate (Child-Pugh Class A and B) hepatic impairment compared to subjects with normal hepatic function. SUTENT was not studied in subjects with severe (Child-Pugh Class C) hepatic impairment. Studies in cancer patients have excluded patients with ALT or AST >2.5 × ULN or, if due to liver metastases, >5.0 × ULN.
Females of Reproductive Potential and Males
Effects on the female reproductive system were identified in a 3-month repeat dose monkey study (2, 6, 12 mg/kg/day), where ovarian changes (decreased follicular development) were noted at 12 mg/kg/day (≥5.1 times the AUC in patients administered the RDD), while uterine changes (endometrial atrophy) were noted at ≥2 mg/kg/day (≥0.4 times the AUC in patients administered the RDD). With the addition of vaginal atrophy, the uterine and ovarian effects were reproduced at 6 mg/kg/day in the 9-month monkey study (0.3, 1.5 and 6 mg/kg/day administered daily for 28 days followed by a 14 day respite; the 6 mg/kg dose produced a mean AUC that was ≥0.8 times the AUC in patients administered the RDD). A no effect level was not identified in the 3 month study; 1.5 mg/kg/day represents a no effect level in monkeys administered sunitinib for 9 months.
Although fertility was not affected in rats, SUTENT may impair fertility in humans. In female rats, no fertility effects were observed at doses of ≤5.0 mg/kg/day [(0.5, 1.5, 5.0 mg/kg/day) administered for 21 days up to gestational day 7; the 5.0 mg/kg dose produced an AUC that was ≥5 times the AUC in patients administered the RDD], however significant embryolethality was observed at the 5.0 mg/kg dose. No reproductive effects were observed in male rats dosed (1, 3 or 10 mg/kg/day) for 58 days prior to mating with untreated females. Fertility, copulation, conception indices, and sperm evaluation (morphology, concentration, and motility) were unaffected by sunitinib at doses ≤10 mg/kg/day (the 10 mg/kg/day dose produced a mean AUC that was ≥25.8 times the AUC in patients administered the RDD).
Immunocompromised Patients
There is no FDA guidance one the use of Sunitinib in patients who are immunocompromised.
Administration and Monitoring
Administration
Oral
Monitoring
There is limited information regarding Sunitinib Monitoring in the drug label.
IV Compatibility
There is limited information regarding the compatibility of Sunitinib and IV administrations.
Overdosage
Treatment of overdose with SUTENT should consist of general supportive measures. There is no specific antidote for overdosage with SUTENT. If indicated, elimination of unabsorbed drug should be achieved by emesis or gastric lavage. A few cases of accidental overdose have been reported; these cases were associated with adverse reactions consistent with the known safety profile of SUTENT, or without adverse reactions. A case of intentional overdose involving the ingestion of 1,500 mg of SUTENT in an attempted suicide was reported without adverse reaction. In non-clinical studies mortality was observed following as few as 5 daily doses of 500 mg/kg (3000 mg/m2) in rats. At this dose, signs of toxicity included impaired muscle coordination, head shakes, hypoactivity, ocular discharge, piloerection and gastrointestinal distress. Mortality and similar signs of toxicity were observed at lower doses when administered for longer durations.
Pharmacology
Mechanism of Action
Sunitinib is a small molecule that inhibits multiple receptor tyrosine kinases (RTKs), some of which are implicated in tumor growth, pathologic angiogenesis, and metastatic progression of cancer. Sunitinib was evaluated for its inhibitory activity against a variety of kinases (>80 kinases) and was identified as an inhibitor of platelet-derived growth factor receptors (PDGFRα and PDGFRβ), vascular endothelial growth factor receptors (VEGFR1, VEGFR2 and VEGFR3), stem cell factor receptor (KIT), Fms-like tyrosine kinase-3 (FLT3), colony stimulating factor receptor Type 1 (CSF-1R), and the glial cell-line derived neurotrophic factor receptor (RET). Sunitinib inhibition of the activity of these RTKs has been demonstrated in biochemical and cellular assays, and inhibition of function has been demonstrated in cell proliferation assays. The primary metabolite exhibits similar potency compared to sunitinib in biochemical and cellular assays.
Sunitinib inhibited the phosphorylation of multiple RTKs (PDGFRβ, VEGFR2, KIT) in tumor xenografts expressing RTK targets in vivo and demonstrated inhibition of tumor growth or tumor regression and/or inhibited metastases in some experimental models of cancer. Sunitinib demonstrated the ability to inhibit growth of tumor cells expressing dysregulated target RTKs (PDGFR, RET, or KIT) in vitro and to inhibit PDGFRβ- and VEGFR2-dependent tumor angiogenesis in vivo.
Structure
Sunitinib malate is described chemically as Butanedioic acid, hydroxy-, (2S)-, compound with N-[2-(diethylamino)ethyl]-5-[(Z)-(5-fluoro-1,2-dihydro-2-oxo-3H-indol-3-ylidine)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide (1:1). The molecular formula is C22H27FN4O2 • C4H6O5 and the molecular weight is 532.6 Daltons.
The chemical structure of sunitinib malate is:
Pharmacodynamics
There is limited information regarding Sunitinib Pharmacodynamics in the drug label.
Pharmacokinetics
The pharmacokinetics of sunitinib and sunitinib malate have been evaluated in 135 healthy volunteers and in 266 patients with solid tumors.
Maximum plasma concentrations (Cmax) of sunitinib are generally observed between 6 and 12 hours (Tmax) following oral administration. Food has no effect on the bioavailability of sunitinib. SUTENT may be taken with or without food.
Binding of sunitinib and its primary active metabolite to human plasma protein in vitro was 95% and 90%, respectively, with no concentration dependence in the range of 100 – 4000 ng/mL. The apparent volume of distribution (Vd/F) for sunitinib was 2230 L. In the dosing range of 25 – 100 mg, the area under the plasma concentration-time curve (AUC) and Cmax increase proportionately with dose.
Sunitinib is metabolized primarily by the cytochrome P450 enzyme, CYP3A4, to produce its primary active metabolite, which is further metabolized by CYP3A4. The primary active metabolite comprises 23 to 37% of the total exposure. Elimination is primarily via feces. In a human mass balance study of [14C]sunitinib, 61% of the dose was eliminated in feces, with renal elimination accounting for 16% of the administered dose. Sunitinib and its primary active metabolite were the major drug-related compounds identified in plasma, urine, and feces, representing 91.5%, 86.4% and 73.8% of radioactivity in pooled samples, respectively. Minor metabolites were identified in urine and feces but generally not found in plasma. Total oral clearance (CL/F) ranged from 34 to 62 L/hr with an inter-patient variability of 40%.
Following administration of a single oral dose in healthy volunteers, the terminal half-lives of sunitinib and its primary active metabolite are approximately 40 to 60 hours and 80 to 110 hours, respectively. With repeated daily administration, sunitinib accumulates 3- to 4-fold while the primary metabolite accumulates 7- to 10-fold. Steady-state concentrations of sunitinib and its primary active metabolite are achieved within 10 to 14 days. By Day 14, combined plasma concentrations of sunitinib and its active metabolite ranged from 62.9 – 101 ng/mL. No significant changes in the pharmacokinetics of sunitinib or the primary active metabolite were observed with repeated daily administration or with repeated cycles in the dosing regimens tested.
The pharmacokinetics were similar in healthy volunteers and in the solid tumor patient populations tested, including patients with GIST and RCC.
Nonclinical Toxicology
Carcinogenesis and Mutagenesis
The carcinogenic potential of sunitinib has been evaluated in two species: rasH2 transgenic mice and Sprague-Dawley rats. There were similar positive findings in both species. In rasH2 transgenic mice gastroduodenal carcinomas and/or gastric mucosal hyperplasia, as well as an increased incidence of background hemangiosarcomas were observed at doses of ≥25 mg/kg/day following daily dose administration of sunitinib in studies of 1 or 6 months duration. No proliferative changes were observed in rasH2 transgenic mice at 8 mg/kg/day. Similarly, in a 2-year rat carcinogenicity study, administration of sunitinib in 28-day cycles followed by 7-day dose-free periods resulted in findings of duodenal carcinoma at doses as low as 1 mg/kg/day (approximately 0.9 times the AUC in patients given the RDD of 50 mg/day).At the high dose of 3 mg/kg/day (approximately 7.8 times the AUC in patients at the RDD of 50 mg/day) the incidence of duodenal tumors was increased and was accompanied by findings of gastric mucous cell hyperplasia and by an increased incidence of pheochromocytoma and hyperplasia of the adrenal. Sunitinib did not cause genetic damage when tested in in vitro assays (bacterial mutation [AMES Assay], human lymphocyte chromosome aberration) and an in vivo rat bone marrow micronucleus test.
Clinical Studies
Gastrointestinal Stromal Tumor
GIST Study A
Study A was a two-arm, international, randomized, double-blind, placebo-controlled trial of SUTENT in patients with GIST who had disease progression during prior imatinib mesylate (imatinib) treatment or who were intolerant of imatinib. The objective was to compare Time-to-Tumor Progression (TTP) in patients receiving SUTENT plus best supportive care versus patients receiving placebo plus best supportive care. Other objectives included Progression-Free Survival (PFS), Objective Response Rate (ORR), and Overall Survival (OS). Patients were randomized (2:1) to receive either 50 mg SUTENT or placebo orally, once daily, on Schedule 4/2 until disease progression or withdrawal from the study for another reason. Treatment was unblinded at the time of disease progression. Patients randomized to placebo were then offered crossover to open-label SUTENT, and patients randomized to SUTENT were permitted to continue treatment per investigator judgment.
At the time of a pre-specified interim analysis, the intent-to-treat (ITT) population included 312 patients. Two-hundred seven (207) patients were randomized to the SUTENT arm, and 105 patients were randomized to the placebo arm. Demographics were comparable between the SUTENT and placebo groups with regard to age (69% vs 72% <65 years for SUTENT vs. placebo, respectively), gender (Male: 64% vs. 61%), race (White: (88% both arms, Asian: 5% both arms, Black: 4% both arms, remainder not reported), and Performance Status (ECOG 0: 44% vs. 46%, ECOG 1: 55% vs. 52%, and ECOG 2: 1 vs. 2%). Prior treatment included surgery (94% vs. 93%) and radiotherapy (8% vs. 15%). Outcome of prior imatinib treatment was also comparable between arms with intolerance (4% vs. 4%), progression within 6 months of starting treatment (17% vs. 16%), or progression beyond 6 months (78% vs. 80%) balanced.
The planned interim efficacy and safety analysis was performed after 149 TTP events had occurred. There was a statistically significant advantage for SUTENT over placebo in TTP, meeting the primary endpoint. Efficacy results are summarized in Table 7 and the Kaplan-Meier curve for TTP is in Figure 1.
The final ITT population enrolled in the double-blind treatment phase of the study included 243 patients randomized to the SUTENT arm and 118 patients randomized to the placebo arm. After the primary endpoint was met at the interim analysis, the study was unblinded, and patients on the placebo arm were offered open-label SUTENT treatment. Ninety-nine of the patients initially randomized to placebo crossed over to receive SUTENT in the open-label treatment phase. At the protocol specified final analysis of OS, the median OS was 72.7 weeks for the SUTENT arm and 64.9 weeks for the placebo arm [HR= 0.876, 95% CI (0.679, 1.129)].
Study B
Study B was an open-label, multi-center, single-arm, dose-escalation study conducted in patients with GIST following progression on or intolerance to imatinib. Following identification of the recommended Phase 2 regimen (50 mg once daily on Schedule 4/2), 55 patients in this study received the 50 mg dose of SUTENT on treatment Schedule 4/2. Partial responses were observed in 5 of 55 patients [9.1% PR rate, 95% CI (3.0, 20.0)].
Renal Cell Carcinoma
Treatment-Naïve RCC
A multi-center, international randomized study comparing single-agent SUTENT with IFN-α was conducted in patients with treatment-naïve RCC. The objective was to compare Progression-Free Survival (PFS) in patients receiving SUTENT versus patients receiving IFN-α. Other endpoints included Objective Response Rate (ORR), Overall Survival (OS) and safety. Seven hundred fifty (750) patients were randomized (1:1) to receive either 50 mg SUTENT once daily on Schedule 4/2 or to receive IFN-α administered subcutaneously at 9 MIU three times a week. Patients were treated until disease progression or withdrawal from the study.
The ITT population included 750 patients, 375 randomized to SUTENT and 375 randomized to IFN-α. Demographics were comparable between the SUTENT and IFN-α groups with regard to age (59% vs. 67% <65 years for SUTENT vs. IFN-α, respectively), gender (Male: 71% vs. 72%), race (White: 94% vs. 91%, Asian: 2% vs. 3%, Black: 1% vs. 2%, remainder not reported), and Performance Status (ECOG 0: 62% vs. 61%, ECOG 1: 38% each arm, ECOG 2: 0 vs. 1%). Prior treatment included nephrectomy (91% vs. 89%) and radiotherapy (14% each arm). The most common site of metastases present at screening was the lung (78% vs. 80%, respectively), followed by the lymph nodes (58% vs. 53%, respectively) and bone (30% each arm); the majority of the patients had multiple (2 or more) metastatic sites at baseline (80% vs. 77%, respectively).
There was a statistically significant advantage for SUTENT over IFN-α in the endpoint of PFS (see TABLE 8 and FIGURE 2). In the pre-specified stratification factors of LDH (>1.5 ULN vs. ≤1.5 ULN), ECOG performance status (0 vs. 1), and prior nephrectomy (yes vs. no), the hazard ratio favored SUTENT over IFN-α. The ORR was higher in the SUTENT arm (see TABLE 8).
At the protocol-specified final analysis of OS, the median OS was 114.6 weeks for the SUTENT arm and 94.9 weeks for the IFN-α arm [HR= 0.821, 95% CI (0.673, 1.001)]. The median OS for the IFN-α arm includes 25 patients who discontinued IFN-α treatment because of disease progression and crossed over to treatment with SUTENT as well as 121 patients (32%) on the IFN-α arm who received post-study cancer treatment with SUTENT.
Cytokine-Refractory RCC
The use of single agent SUTENT in the treatment of cytokine-refractory RCC was investigated in two single-arm, multi-center studies. All patients enrolled into these studies experienced failure of prior cytokine-based therapy. In Study 1, failure of prior cytokine therapy was based on radiographic evidence of disease progression defined by RECIST or World Health Organization (WHO) criteria during or within 9 months of completion of 1 cytokine therapy treatment (IFN-α, interleukin-2, or IFN-α plus interleukin-2; patients who were treated with IFN-α alone must have received treatment for at least 28 days). In Study 2, failure of prior cytokine therapy was defined as disease progression or unacceptable treatment-related toxicity. The endpoint for both studies was ORR. Duration of Response (DR) was also evaluated.
One hundred six patients (106) were enrolled into Study 1, and 63 patients were enrolled into Study 2. Patients received 50 mg SUTENT on Schedule 4/2. Therapy was continued until the patients met withdrawal criteria or had progressive disease. The baseline age, gender, race and ECOG performance statuses of the patients were comparable between Studies 1 and 2. Approximately 86–94% of patients in the two studies were White. Men comprised 65% of the pooled population. The median age was 57 years and ranged from 24 to 87 years in the studies. All patients had an ECOG performance status <2 at the screening visit.
The baseline malignancy and prior treatment history of the patients were comparable between Studies 1 and 2. Across the two studies, 95% of the pooled population of patients had at least some component of clear-cell histology. All patients in Study 1 were required to have a histological clear-cell component. Most patients enrolled in the studies (97% of the pooled population) had undergone nephrectomy; prior nephrectomy was required for patients enrolled in Study 1. All patients had received one previous cytokine regimen. Metastatic disease present at the time of study entry included lung metastases in 81% of patients. Liver metastases were more common in Study 1 (27% vs. 16% in Study 2) and bone metastases were more common in Study 2 (51% vs. 25% in Study 1); 52% of patients in the pooled population had at least 3 metastatic sites. Patients with known brain metastases or leptomeningeal disease were excluded from both studies.
The ORR and DR data from Studies 1 and 2 are provided in Table 9. There were 36 PRs in Study 1 as assessed by a core radiology laboratory for an ORR of 34.0% (95% CI 25.0, 43.8). There were 23 PRs in Study 2 as assessed by the investigators for an ORR of 36.5% (95% CI 24.7, 49.6). The majority (>90%) of objective disease responses were observed during the first four cycles; the latest reported response was observed in Cycle 10. DR data from Study 1 is premature as only 9 of 36 patients (25%) responding to treatment had experienced disease progression or died at the time of the data cutoff.
Pancreatic Neuroendocrine Tumors
The Phase 3 study was a multi-center, international, randomized, double-blind placebo-controlled study of single-agent SUTENT conducted in patients with unresectable pNET. Patients were required to have documented RECIST-defined disease progression within the prior 12 months and were randomized (1:1) to receive either 37.5 mg SUTENT (n=86) or placebo (n=85) once daily without a scheduled off-treatment period. The primary objective was to compare Progression-Free Survival (PFS) in patients receiving SUTENT versus patients receiving placebo. Other endpoints included Overall Survival (OS), Objective Response Rate (ORR), and safety. Use of somatostatin analogs was allowed in the study.
Demographics were comparable between the SUTENT and placebo groups. Additionally, 49% of SUTENT patients had non-functioning tumors vs 52% of placebo patients, and 92% patients in both arms had liver metastases. A total of 66% of SUTENT patients received prior systemic therapy compared with 72% of placebo patients and 35% of SUTENT patients had received somatostatin analogs compared with 38% of placebo patients. Patients were treated until disease progression or withdrawal from the study. Upon disease progression, or study closure, patients were offered access to SUTENT in a separate extension study.
As recommended by the Independent Data Monitoring Committee, the study was terminated prematurely prior to the pre-specified interim analysis. This may have led to an overestimate of the magnitude of PFS effect. A clinically significant improvement for SUTENT over placebo in PFS was seen by both investigator and independent assessment. A hazard ratio favoring SUTENT was observed in all subgroups of baseline characteristics evaluated. OS data were not mature at the time of the analysis. There were 9 deaths in the SUTENT arm and 21 deaths in the placebo arm. A statistically significant difference in ORR favoring SUTENT over placebo was observed. Efficacy results are summarized in Table 10 and the Kaplan-Meier curve for PFS is in Figure 3.
How Supplied
- 12.5 mg Capsules
- Bottles of 28
- NDC 0069-0550-38
- 25 mg Capsules
- Bottles of 28
- NDC 0069-0770-38
- 37.5 mg Capsules
- Bottles of 28
- NDC 0069-0830-38
- 50 mg Capsules
- Bottles of 28
- NDC 0069-0980-38
Storage
Store at 25°C (77°F)
Images
Drug Images
{{#ask: Page Name::Sunitinib |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}
Package and Label Display Panel
{{#ask: Label Page::Sunitinib |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}
Patient Counseling Information
Gastrointestinal Disorders
Gastrointestinal disorders such as diarrhea, nausea, stomatitis, dyspepsia, and vomiting were the most commonly reported gastrointestinal events occurring in patients who received SUTENT. Supportive care for gastrointestinal adverse events requiring treatment may include anti-emetic or anti-diarrheal medication.
Skin Effects
Skin discoloration possibly due to the drug color (yellow) occurred in approximately one third of patients. Patients should be advised that depigmentation of the hair or skin may occur during treatment with SUTENT. Other possible dermatologic effects may include dryness, thickness or cracking of skin, blister or rash on the palms of the hands and soles of the feet. Severe dermatologic toxicities including Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis have been reported. Patients should be advised to immediately inform their healthcare provider if severe dermatologic reactions occur.
Other Common Events
Other commonly reported adverse events included fatigue, high blood pressure, bleeding, swelling, mouth pain/irritation and taste disturbance.
Musculoskeletal Disorders
Prior to treatment with SUTENT, a dental examination and appropriate preventive dentistry should be considered. In patients being treated with SUTENT, who have previously received or are receiving bisphosphonates, invasive dental procedures should be avoided, if possible.
Concomitant Medications
Patients should be advised to inform their healthcare providers of all concomitant medications, including over-the-counter medications and dietary supplements
Precautions with Alcohol
Alcohol-Sunitinib interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.
Brand Names
There is limited information regarding Sunitinib Brand Names in the drug label.
Look-Alike Drug Names
There is limited information regarding Sunitinib Look-Alike Drug Names in the drug label.
Drug Shortage Status
Price
References
The contents of this FDA label are provided by the National Library of Medicine.
{{#subobject:
|Label Page=Sunitinib |Label Name=Sunitininb malate 12.5 mg.jpg
}}
File:Sunitinib.svg | |
Clinical data | |
---|---|
[[Regulation of therapeutic goods |Template:Engvar data]] | |
Pregnancy category | |
Routes of administration | Oral |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | Unaffected by food |
Protein binding | 95% |
Metabolism | Hepatic (CYP3A4-mediated) |
Elimination half-life | 40 to 60 hours (sunitinib) 80 to 110 hours (metabolite) |
Excretion | Fecal (61%) and renal (16%) |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
E number | {{#property:P628}} |
ECHA InfoCard | {{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value). |
Chemical and physical data | |
Formula | C22H27FN4O2 |
Molar mass | 398.474 g/mol 532.561 g/mol (malate) |
WikiDoc Resources for Sunitinib |
Articles |
---|
Most recent articles on Sunitinib |
Media |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on Sunitinib at Clinical Trials.gov Clinical Trials on Sunitinib at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on Sunitinib
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on Sunitinib Discussion groups on Sunitinib Directions to Hospitals Treating Sunitinib Risk calculators and risk factors for Sunitinib
|
Healthcare Provider Resources |
Causes & Risk Factors for Sunitinib |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Overview
Sunitinib (marketed as Sutent, and previously known as SU11248) is an oral, small-molecule, multi-targeted receptor tyrosine kinase (RTK) inhibitor that was approved by the FDA for the treatment of renal cell carcinoma (RCC) and imatinib-resistant gastrointestinal stromal tumor (GIST) on January 26, 2006. Sunitinib was the first cancer drug simultaneously approved for two different indications. [1] Sunitinib has become the standard of care for both of these cancers, and is currently being studied for the treatment of many others.
Mechanism of action
Sunitinib inhibits cellular signaling by targeting multiple RTKs. These include all platelet-derived growth factor receptors (PDGF-R) and vascular endothelial growth factor receptors (VEGF-R), which play a role in both tumor angiogenesis and tumor cell proliferation. The simultaneous inhibition of these targets therefore leads to both reduced tumor vascularization and cancer cell death, and ultimately tumor shrinkage. Sunitinib also inhibits KIT (CD117), the RTK that drives the majority of GISTs. In addition, sunitinib inhibits other RTKs including RET, CSF-1R, and flt3. [2]
Indications
Renal cell carcinoma
Sunitinib has become the new standard of care in the first-line treatment of metastatic RCC.
RCC is generally resistant to chemotherapy or radiation. Prior to RTKs, metastatic disease could only be treated with the cytokines interferon alpha (IFNa) or Interleukin 2 (IL-2). However, these agents demonstrated low rates of efficacy (5%-20%) and are associated with severe infusion-related adverse events. [3]
In two separate Phase II studies, sunitinib demonstrated consistent response rates of approximately 40% in patients who had already failed cytokine therapy. [3] Although these were Phase II studies, these results were impressive enough for the FDA to approve sunitinib for first-line use even before Phase III data were available.
The results of the Phase III study, published in the New England Journal of Medicine in 2007, proved that sunitinib offers superior efficacy compared with IFNa. Progression-free survival (primary endpoint) was more than doubled: 11 months for sunitinib compared with 5 months for IFNa (P<.000001). [2] The benefit for sunitinib was significant across all major patient subgroups, including those with a poor prognosis at baseline. [3]
Secondary endpoints also favored sunitinib. 28% of sunitinib patients had significant tumor shrinkage (objective response) compared with only 5% of patients who received IFNa (P<.001). Although overall survival data are not yet mature, there is a clear trend toward improved survival with sunitinib. Patients receiving sunitinib also reported a significantly better quality of life than those treated with IFNa (P<.001). [3]
Sunitinib was generally better tolerated than IFNa. Significantly more patients discontinued IFN due to adverse events (P=.05), withdrawal of consent (P<.001), or disease progression (P<.001). Serious fatigue was significantly more common with IFNa (P<.05), while diarrhea was reported more commonly with sunitinib. [3]
Based on these results, lead investigator Dr. Robert Motzer announced at ASCO 2006 that “Sunitinib is the new reference standard for the first-line treatment of mRCC.” [4]
Gastrointestinal stromal tumor
Like RCC, GIST does not generally respond to standard chemotherapy or radiation. Imatinib was the first cancer agent proven effective for metastatic GIST and represented a major development in the treatment of this rare but challenging disease. However, approximately 20% of patients do not respond to imatinib (early or primary resistance), and among those who do respond initially, 50% develop secondary imatinib resistance and disease progression within 2 years. Prior to sunitinib, patients had no therapeutic option once they became resistant to imatinib. [5]
Sunitinib offers patients with imatinib-resistant GIST a new treatment option to stop further disease progression and, in some cases, even reverse it. This was proven in a large, Phase III clinical trial in which patients who failed imatinib therapy (due to primary resistance, secondary resistance, or intolerance) were treated in a randomized and blinded fashion with either sunitinib or placebo. [5]
The study was unblinded early, at the very first interim analysis, due to the clearly emerging benefit of sunitinib. At that time, patients receiving placebo were offered to switch over to sunitinib. In the primary endpoint of this study, median time to tumor progression (TTP) was more than 4-fold longer with sunitinib (27 weeks) compared with placebo (6 weeks, P<.0001). These are based on the assessments of an independent radiology lab assessment. The benefit of sunitinib remained statistically significant when stratified for a multitude of prespecified baseline factors, including: [5]
- Prior dose of imatinib
- Prior duration of imatinib therapy
- ECOG Performance status
- Age
- Weight
- Race
- Pain score
- Time since initial diagnosis
- Study location
- ITT vs PP analysis
- Investigator vs independent radiology lab assessment
Among the secondary endpoints, the difference in PFS was similar to that in TTP (24 weeks vs 6 weeks, P<.0001). 7% of sunitinib patients had significant tumor shrinkage (objective response) compared with 0% of placebo patients (P=.006). Another 58% of sunitinib patients had disease stabilization vs. 48% of patients receiving placebo. The median time to response with sunitinib was 10.4 weeks. [5] Sunitinib reduced the relative risk of disease progression or death by 67%, and the risk of death alone by 51%. The difference in survival benefit may be diluted by the fact that placebo patients crossed over to sunitinib upon disease progression, and most of these patients subsequently responded to sunitinib. [5]
Sunitinib was relatively well tolerated. 83% of sunitinib patients experienced a treatment-related adverse event of any severity, as did 59% of patients who received placebo. Serious adverse events were reported in 20% of sunitinib patients and 5% of placebo patients. Adverse events were generally moderate and easily managed by dose reduction, dose interruption, or other treatment. 9% of sunitinib patients and 8% of placebo patients discontinued therapy due to an adverse event. [5]
Fatigue is the adverse event most commonly associated with sunitinib therapy. In this study, 34% of sunitinib patients reported any grade of fatigue, compared with 22% for placebo. The incidence of grade 3 (severe) fatigue was similar between the two groups, and there was no grade 4 fatigue reported. [5]
Other solid tumors
The efficacy of sunitinib is currently being evaluated in a broad range of solid tumors, including breast, lung, and colorectal cancers. Early studies have shown single-agent efficacy in a number of different areas.
- A Phase II study in previously-treated patients with metastatic breast cancer found that sunitinib “has significant single agent activity” [6]
- A Phase II study of refractory non-small-cell lung cancer found that “Sunitinib has provocative single-agent activity in previously treated pts with recurrent and advanced NSCLC, with the level of activity similar to currently approved agents.” [7]
- In a Phase II study of patients with nonresectable neuroendocrine tumors (NET), 91% of patients responded to sunitinib (9% partial response + 82% stable disease) [8]
Safety
An oral agent, sunitinib is generally well tolerated. Adverse events are manageable and the incidence of serious adverse events is low. [3] [5]
The most common adverse events associated with sunitinib therapy include fatigue, diarrhea, nausea, anorexia, hypertension, and skin discoloration. In the placebo-controlled Phase III GIST study, adverse events which occurred more often with sunitinib than placebo included diarrhea, anorexia, skin discoloration, mucositis/stomatitis, asthenia, altered taste, and constipation. [2] [5]
Serious (grade 3 or 4) adverse events occur in ≤10% of patients and include hypertension, fatigue, asthenia, diarrhea, and hand-foot syndrome. Lab abnormalities associated with sunitinib therapy include lipase, amylase, neutrophils, lymphocytes, and platelets. Hypothyroidism has also been associated with sunitinib. [2]
Most adverse events can be managed through supportive care, dose interruption, or dose reduction. [3] [5]
References
- ↑ US Food and Drug Administration. "FDA approves new treatment for gastrointestinal and kidney cancer". Available at: http://www.fda.gov/bbs/topics/news/2006/NEW01302.html. External link in
|journal=
(help) - ↑ 2.0 2.1 2.2 2.3 "Prescribing information for Sutent® (sunitinib malate)". Pfizer, Inc, New York NY.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Motzer RJ; et al. (2007). "Sunitinib versus interferon alfa in metastatic renal-cell carcinoma". N Engl J Med. 356 (2): 115–124. PMID 17215529.
- ↑ Motzer RJ; et al. "Phase 3 Randomized Trial of Sunitinib malate (SU11248) versus Interferon-alfa as First-line Systemic Therapy for Patients with Metastatic Renal Cell Carcinoma". Presented at ASCO 2006. Available at: http://www.asco.org/portal/site/ASCO/menuitem.34d60f5624ba07fd506fe310ee37a01d/?vgnextoid=76f8201eb61a7010VgnVCM100000ed730ad1RCRD&vmview=abst_detail_view&confID=40&index=y&abstractID=30512.
- ↑ 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 Demetri GD; et al. (2006). "Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial". Lancet. 368: 1329–1338. PMID 17046465.
- ↑ Miller KD; et al. "Phase II study of SU11248, a multi-targeted tyrosine kinase inhibitor in patients with previously treated metastatic breast cancer". Presented at ASCO 2005. Available at: http://www.asco.org/portal/site/ASCO/menuitem.34d60f5624ba07fd506fe310ee37a01d/?vgnextoid=76f8201eb61a7010VgnVCM100000ed730ad1RCRD&vmview=abst_detail_view&confID=34&abstractID=31881.
- ↑ Socinski MA; et al. (2006). "Efficacy and safety of sunitinib in previously treated, advanced non-small cell lung cancer (NSCLC): preliminary results of a multicenter phase II trial". Journal of Clinical Oncology, 2006 ASCO Annual Meeting Proceedings Part I. 24 (18S (June 20 suppl)). Available at: http://www.asco.org/portal/site/ASCO/menuitem.34d60f5624ba07fd506fe310ee37a01d/?vgnextoid=76f8201eb61a7010VgnVCM100000ed730ad1RCRD&vmview=abst_detail_view&confID=40&abstractID=34252. Unknown parameter
|abstract number=
ignored (help) - ↑ Kulke MH; et al. "A Phase 2 Study to Evaluate the Efficacy of SU11248 in Patients with Unresectable Neuroendocrine Tumors". Presented at ASCO 2005. Available at: http://www.asco.org/portal/site/ASCO/menuitem.34d60f5624ba07fd506fe310ee37a01d/?vgnextoid=76f8201eb61a7010VgnVCM100000ed730ad1RCRD&vmview=abst_detail_view&confID=34&abstractID=33268.
External links
- Sutent.com — Manufacturer's site
- GIST Support International — An international organization for the support of GIST patients, families, and friends. Includes detailed information from some of the foremost experts on GIST, links to research, treatment options, and GIST registry.
- Kidney Cancer Association — An organization that educates physicians and patients about kidney cancer; funds, promotes, and collaborates on research projects; and advocates at the federal and state levels on behalf of patient interests.
- [http//mpablog.typepad.com/david_foster] Cancer veteran's blog with two years experience with Sutent, Nexavar and chemo.
- Pages with script errors
- CS1 errors: external links
- CS1 maint: Explicit use of et al.
- Pages with citations using unsupported parameters
- Pages with broken file links
- E number from Wikidata
- ECHA InfoCard ID from Wikidata
- Chemical articles with unknown parameter in Infobox drug
- Articles without EBI source
- Chemical pages without ChemSpiderID
- Chemical pages without DrugBank identifier
- Articles without KEGG source
- Articles without InChI source
- Articles without UNII source
- Drug has EMA link
- Articles containing unverified chemical infoboxes
- Cancer treatments
- Tyrosine kinase inhibitors