Aprepitant (patient information)

Revision as of 20:17, 22 January 2015 by Alberto Plate (talk | contribs)
Jump to navigation Jump to search

Aprepitant (patient information)
Adult Indications & Dosage
Pediatric Indications & Dosage
Contraindications
Warnings & Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Administration & Monitoring
Overdosage
Pharmacology
Clinical Studies
How Supplied
Images
Patient Counseling Information
Precautions with Alcohol
Brand Names
Look-Alike Names

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Alberto Plate [2]

Disclaimer

WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.

Overview

Aprepitant (patient information) is an antiemetic, neurokinin-1 receptor antagonist that is FDA approved for the prophylaxis of in combination with other antiemetic agents for the:

  • acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy (HEC) including high-dose cisplatin
  • of nausea and vomiting associated with initial and repeat courses of moderately emetogenic cancer chemotherapy (MEC)

Also, indicated for the prevention of postoperative nausea and vomiting (PONV). Common adverse reactions include alopecia, anorexia, asthenia/fatigue, constipation, diarrhea, headache, hiccups, nausea, hypotension, pruritus, pyrexia.

Adult Indications and Dosage

FDA-Labeled Indications and Dosage (Adult)

Prevention of Chemotherapy Induced Nausea and Vomiting (CINV)

Capsules of EMEND (aprepitant) are given for 3 days as part of a regimen that includes a corticosteroid and a 5-HT3 antagonist. The recommended dose of EMEND is 125 mg orally 1 hour prior to chemotherapy treatment (Day 1) and 80 mg orally once daily in the morning on Days 2 and 3.

  • EMEND may be taken with or without food.
  • EMEND (fosaprepitant dimeglumine) for Injection (115 mg) is a prodrug of aprepitant and may be substituted for oral EMEND (125 mg), 30 minutes prior to chemotherapy, on Day 1 only of the CINV regimen as an intravenous infusion administered over 15 minutes.

In clinical studies with EMEND, the following regimen was used for the prevention of nausea and vomiting associated with highly emetogenic cancer chemotherapy:

In a clinical study with EMEND, the following regimen was used for the prevention of nausea and vomiting associated with moderately emetogenic cancer chemotherapy:

Prevention of Postoperative Nausea and Vomiting (PONV)

The recommended oral dosage of EMEND is 40 mg within 3 hours prior to induction of anesthesia. EMEND may be taken with or without food.

Off-Label Use and Dosage (Adult)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Aprepitant (patient information) in adult patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Aprepitant (patient information) in adult patients.

Pediatric Indications and Dosage

FDA-Labeled Indications and Dosage (Pediatric)

There is limited information regarding Aprepitant (patient information) FDA-Labeled Indications and Dosage (Pediatric) in the drug label.

Off-Label Use and Dosage (Pediatric)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Aprepitant (patient information) in pediatric patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Aprepitant (patient information) in pediatric patients.

Contraindications

EMEND is contraindicated in patients who are hypersensitive to any component of the product. EMEND is a dose-dependent inhibitor of cytochrome P450 isoenzyme 3A4 (CYP3A4). EMEND should not be used concurrently with pimozide, terfenadine, astemizole, or cisapride. Inhibition of CYP3A4 by aprepitant could result in elevated plasma concentrations of these drugs, potentially causing serious or life-threatening reactions.

Warnings

CYP3A4 Interactions
  • EMEND (aprepitant), a dose-dependent inhibitor of CYP3A4, should be used with caution in patients receiving concomitant medications that are primarily metabolized through CYP3A4. Moderate inhibition of CYP3A4 by aprepitant, 125 mg/80 mg regimen, could result in elevated plasma concentrations of these concomitant medications.
  • Weak inhibition of CYP3A4 by a single 40 mg dose of aprepitant is not expected to alter the plasma concentrations of concomitant medications that are primarily metabolized through CYP3A4 to a clinically significant degree.
  • When aprepitant is used concomitantly with another CYP3A4 inhibitor, aprepitant plasma concentrations could be elevated. When EMEND is used concomitantly with medications that induce CYP3A4 activity aprepitant plasma concentrations could be reduced and this may result in decreased efficacy of EMEND.
  • Chemotherapy agents that are known to be metabolized by CYP3A4 include docetaxel, paclitaxel, etoposide, irinotecan, ifosfamide, imatinib, vinorelbine, vinblastine and vincristine. In clinical studies, EMEND (125 mg/80 mg regimen) was administered commonly with etoposide, vinorelbine, or paclitaxel. The doses of these agents were not adjusted to account for potential drug interactions.
  • In separate pharmacokinetic studies no clinically significant change in docetaxel or vinorelbine pharmacokinetics was observed when EMEND (125 mg/80 mg regimen) was co-administered.
  • Due to the small number of patients in clinical studies who received the CYP3A4 substrates vinblastine, vincristine, or ifosfamide, particular caution and careful monitoring are advised in patients receiving these agents or other chemotherapy agents metabolized primarily by CYP3A4 that were not studied.
Coadministration with Warfarin (a CYP2C9 substrate)

Coadministration of EMEND with warfarin may result in a clinically significant decrease in International Normalized Ratio (INR) of prothrombin time. In patients on chronic warfarin therapy, the INR should be closely monitored in the 2-week period, particularly at 7 to 10 days, following initiation of the 3-day regimen of EMEND with each chemotherapy cycle, or following administration of a single 40 mg dose of EMEND for the prevention of postoperative nausea and vomiting.

Coadministration with Hormonal Contraceptives

Upon coadministration with EMEND, the efficacy of hormonal contraceptives during and for 28 days following the last dose of EMEND may be reduced. Alternative or back-up methods of contraception should be used during treatment with EMEND and for 1 month following the last dose of EMEND.

Patients with Severe Hepatic Impairment

There are no clinical or pharmacokinetic data in patients with severe hepatic impairment ([Child-Pugh score]] >9). Therefore, caution should be exercised when EMEND is administered in these patients.

Chronic Continuous Use

Chronic continuous use of EMEND for prevention of nausea and vomiting is not recommended because it has not been studied; and because the drug interaction profile may change during chronic continuous use.

Adverse Reactions

Clinical Trials Experience

In 2 well-controlled clinical trials in patients receiving highly emetogenic cancer chemotherapy, 544 patients were treated with aprepitant during Cycle 1 of chemotherapy and 413 of these patients continued into the Multiple-Cycle extension for up to 6 cycles of chemotherapy. EMEND was given in combination with ondansetron and dexamethasone. In Cycle 1, clinical adverse experiences were reported in approximately 69% of patients treated with the aprepitant regimen compared with approximately 68% of patients treated with standard therapy. Table 1 shows the percent of patients with clinical adverse experiences reported at an incidence ≥3%.

In a combined analysis of these two studies, isolated cases of serious adverse experiences were similar in the two treatment groups.

Highly and Moderately Emetogenic Chemotherapy

The following additional clinical adverse experiences (incidence >0.5% and greater than standard therapy), regardless of causality, were reported in patients treated with aprepitant regimen in either HEC or MEC studies:

Infections and infestations: candidiasis, herpes simplex, lower respiratory infection, oral candidiasis, pharyngitis, septic shock, upper respiratory infection, urinary tract infection.

Neoplasms benign, malignant and unspecified (including cysts and polyps): malignant neoplasm, non-small cell lung carcinoma.

Blood and lymphatic system disorders: anemia, febrile neutropenia, thrombocytopenia.

Metabolism and nutrition disorders: appetite decreased, diabetes mellitus, hypokalemia.

Psychiatric disorders: anxiety disorder, confusion, depression.

Nervous system: peripheral neuropathy, sensory neuropathy, taste disturbance, tremor.

Eye disorders: conjunctivitis.

Cardiac disorders: myocardial infarction, palpitations, tachycardia.

Vascular disorders: deep venous thrombosis, flushing, hot flush, hypertension, hypotension.

Respiratory, thoracic and mediastinal disorders: cough, dyspnea, nasal secretion, pharyngolaryngeal pain, pneumonitis, pulmonary embolism, respiratory insufficiency, vocal disturbance.

Gastrointestinal disorders: abdominal pain upper, acid reflux, deglutition disorder, dry mouth, dysgeusia, dysphagia, eructation, flatulence, obstipation, salivation increased.

Skin and subcutaneous tissue disorders: acne, diaphoresis, pruritus, rash.

Musculoskeletal and connective tissue disorders: arthralgia, back pain, muscular weakness, musculoskeletal pain, myalgia.

Renal and urinary disorders: dysuria, renal insufficiency.

Reproductive system and breast disorders: pelvic pain.

General disorders and administrative site conditions: edema, malaise, pain, rigors.

Investigations: weight loss.

Stevens-Johnson syndrome was reported as a serious adverse experience in a patient receiving aprepitant with cancer chemotherapy in another CINV study.

Laboratory Adverse Experiences

Table 3 shows the percent of patients with laboratory adverse experiences reported at an incidence ≥3% in patients receiving highly emetogenic chemotherapy.

The following additional laboratory adverse experiences (incidence >0.5% and greater than standard therapy), regardless of causality, were reported in patients treated with aprepitant regimen: alkaline phosphatase increased, hyperglycemia, hyponatremia, leukocytes increased, erythrocyturia, leukocyturia.

The adverse experience profiles in the Multiple-Cycle extensions of HEC and MEC studies for up to 6 cycles of chemotherapy were generally similar to that observed in Cycle 1.

Postoperative Nausea and Vomiting

In well-controlled clinical studies in patients receiving general anesthesia, 564 patients were administered 40 mg aprepitant orally and 538 patients were administered 4 mg ondansetron IV.

Clinical adverse experiences were reported in approximately 60% of patients treated with 40 mg aprepitant compared with approximately 64% of patients treated with 4 mg ondansetron IV. Table 4 shows the percent of patients with clinical adverse experiences reported at an incidence ≥3% of the combined studies.

The following additional clinical adverse experiences (incidence >0.5% and greater than ondansetron), regardless of causality, were reported in patients treated with aprepitant:

Infections and infestations: postoperative infection

Metabolism and nutrition disorders: hypokalemia, hypovolemia.

Nervous system disorders: dizziness, hypoesthesia, syncope.

Vascular disorders: hematoma

Respiratory, thoracic and mediastinal disorders: dyspnea, hypoxia, respiratory depression.

Gastrointestinal disorders: abdominal pain, abdominal pain upper, dry mouth, dyspepsia.

Skin and subcutaneous tissue disorders: urticaria

General disorders and administrative site conditions: hypothermia, pain.

Investigations: blood pressure decreased

Injury, poisoning and procedural complications: operative hemorrhage, wound dehiscence.

Other adverse experiences (incidence ≤0.5%) reported in patients treated with aprepitant 40 mg for postoperative nausea and vomiting included:

Nervous system disorders: dysarthria, sensory disturbance.

Eye disorders: miosis, visual acuity reduced.

Respiratory, thoracic and mediastinal disorders: wheezing

Gastrointestinal disorders: bowel sounds abnormal, stomach discomfort.

There were no serious adverse drug-related experiences reported in the postoperative nausea and vomiting clinical studies in patients taking 40 mg aprepitant.

Laboratory Adverse Experiences

One laboratory adverse experience, hemoglobin decreased (40 mg aprepitant 3.8%, ondansetron 4.2%), was reported at an incidence ≥3% in a patient receiving general anesthesia.

The following additional laboratory adverse experiences (incidence >0.5% and greater than ondansetron), regardless of causality, were reported in patients treated with aprepitant 40 mg: blood albumin decreased, blood bilirubin increased, blood glucose increased, blood potassium decreased, glucose urine present.

The adverse experience of ALT increased occurred with similar incidence in patients treated with aprepitant 40 mg (1.1%) as in patients treated with ondansetron 4 mg (1.0%).

Other Studies

In addition, two serious adverse experiences were reported in postoperative nausea and vomiting (PONV) clinical studies in patients taking a higher dose of aprepitant: one case of constipation, and one case of sub-ileus.

Angioedema and urticaria were reported as serious adverse experiences in a patient receiving aprepitant in a non-CINV/non-PONV study.

Postmarketing Experience

The following adverse reactions have been identified during postmarketing use of aprepitant. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to the drug.

Skin and subcutaneous tissue disorders: pruritus, rash, urticaria.

Immune system disorders: hypersensitivity reactions including anaphylactic reactions.

Drug Interactions

Effect of Aprepitant on the Pharmacokinetics of Other Agents
CYP3A4 Substrates
  • Weak inhibition of CYP3A4 by a single 40 mg dose of aprepitant is not expected to alter the plasma concentrations of concomitant medications that are primarily metabolized through CYP3A4 to a clinically significant degree. However, higher aprepitant doses or repeated dosing at any aprepitant dose may have a clinically significant effect.
  • As a moderate inhibitor of CYP3A4 at a dose of 125 mg/80 mg, aprepitant can increase plasma concentrations of concomitantly administered oral medications that are metabolized through CYP3A4. The use of fosaprepitant may increase CYP3A4 substrate plasma concentrations to a lesser degree than the use of oral aprepitant (125 mg).
5-HT3 antagonists

In clinical drug interaction studies, aprepitant did not have clinically important effects on the pharmacokinetics of ondansetron, granisetron, or hydrodolasetron (the active metabolite of dolasetron).

Corticosteroids
  • Dexamethasone: EMEND, when given as a regimen of 125 mg with dexamethasone coadministered orally as 20 mg on Day 1, and EMEND when given as 80 mg/day with dexamethasone coadministered orally as 8 mg on Days 2 through 5, increased the AUC of dexamethasone, a CYP3A4 substrate, by 2.2-fold on Days 1 and 5. The oral dexamethasone doses should be reduced by approximately 50% when coadministered with EMEND (125 mg/80 mg regimen), to achieve exposures of dexamethasone similar to those obtained when it is given without EMEND. The daily dose of dexamethasone administered in clinical chemotherapy induced nausea and vomiting studies with EMEND reflects an approximate 50% reduction of the dose of dexamethasone. A single dose of EMEND (40 mg) when coadministered with a single oral dose of dexamethasone 20 mg, increased the AUC of dexamethasone by 1.45-fold. Therefore, no dose adjustment is recommended.
  • Methylprednisolone: EMEND, when given as a regimen of 125 mg on Day 1 and 80 mg/day on Days 2 and 3, increased the AUC of methylprednisolone, a CYP3A4 substrate, by 1.34-fold on Day 1 and by 2.5-fold on Day 3, when methylprednisolone was coadministered intravenously as 125 mg on Day 1 and orally as 40 mg on Days 2 and 3. The IV methylprednisolone dose should be reduced by approximately 25%, and the oral methylprednisolone dose should be reduced by approximately 50% when coadministered with EMEND (125 mg/80 mg regimen) to achieve exposures of methylprednisolone similar to those obtained when it is given without EMEND. Although the concomitant administration of methylprednisolone with the single 40 mg dose of aprepitant has not been studied, a single 40 mg dose of EMEND produces a weak inhibition of CYP3A4 (based on midazolam interaction study) and it is not expected to alter the plasma concentrations of methylprednisolone to a clinically significant degree. Therefore, no dose adjustment is recommended.
Chemotherapeutic agents
  • Docetaxel: In a pharmacokinetic study, EMEND (125 mg/80 mg regimen) did not influence the pharmacokinetics of docetaxel.
  • Vinorelbine: In a pharmacokinetic study, EMEND (125 mg/80 mg regimen) did not influence the pharmacokinetics of vinorelbine to a clinically significant degree.
CYP2C9 Substrates (Warfarin, Tolbutamide)

Aprepitant has been shown to induce the metabolism of S(-) warfarin and tolbutamide, which are metabolized through CYP2C9. Coadministration of EMEND with these drugs or other drugs that are known to be metabolized by CYP2C9, such as phenytoin, may result in lower plasma concentrations of these drugs.

Warfarin

A single 125-mg dose of EMEND was administered on Day 1 and 80 mg/day on Days 2 and 3 to healthy subjects who were stabilized on chronic warfarin therapy. Although there was no effect of EMEND on the plasma AUC of R(+) or S(-) warfarin determined on Day 3, there was a 34% decrease in S(-) warfarin (a CYP2C9 substrate) trough concentration accompanied by a 14% decrease in the prothrombin time (reported as International Normalized Ratio or INR) 5 days after completion of dosing with EMEND. In patients on chronic warfarin therapy, the prothrombin time (INR) should be closely monitored in the 2-week period, particularly at 7 to 10 days, following initiation of the 3-day regimen of EMEND with each chemotherapy cycle, or following administration of a single 40 mg dose of EMEND for the prevention of postoperative nausea and vomiting.

Tolbutamide
  • EMEND, when given as 125 mg on Day 1 and 80 mg/day on Days 2 and 3, decreased the AUC of tolbutamide (a CYP2C9 substrate) by 23% on Day 4, 28% on Day 8, and 15% on Day 15, when a single dose of tolbutamide 500 mg was administered orally prior to the administration of the 3-day regimen of EMEND and on Days 4, 8, and 15.
  • EMEND, when given as a 40-mg single oral dose on Day 1, decreased the AUC of tolbutamide (a CYP2C9 substrate) by 8% on Day 2, 16% on Day 4, 15% on Day 8, and 10% on Day 15, when a single dose of tolbutamide 500 mg was administered orally prior to the administration of EMEND 40 mg and on Days 2, 4, 8, and 15. This effect was not considered clinically important.
Oral contraceptives

Aprepitant, when given once daily for 14 days as a 100-mg capsule with an oral contraceptive containing 35 mcg of ethinyl estradiol and 1 mg of norethindrone, decreased the AUC of ethinyl estradiol by 43%, and decreased the AUC of norethindrone by 8%.

In another study, a daily dose of an oral contraceptive containing ethinyl estradiol and norethindrone was administered on Days 1 through 21, and EMEND was given as a 3-day regimen of 125 mg on Day 8 and 80 mg/day on Days 9 and 10 with ondansetron 32 mg IV on Day 8 and oral dexamethasone given as 12 mg on Day 8 and 8 mg/day on Days 9, 10, and 11. In the study, the AUC of ethinyl estradiol decreased by 19% on Day 10 and there was as much as a 64% decrease in ethinyl estradiol trough concentrations during Days 9 through 21. While there was no effect of EMEND on the AUC of norethindrone on Day 10, there was as much as a 60% decrease in norethindrone trough concentrations during Days 9 through 21.

In another study, a daily dose of an oral contraceptive containing ethinyl estradiol and norgestimate (which is converted to norelgestromin) was administered on Days 1 through 21, and EMEND 40 mg was given on Day 8. In the study, the AUC of ethinyl estradiol decreased by 4% and 29% on Day 8 and Day 12, respectively, while the AUC of norelgestromin increased by 18% on Day 8 and decreased by 10% on Day 12. In addition, the trough concentrations of ethinyl estradiol and norelgestromin on Days 8 through 21 were generally lower following coadministration of the oral contraceptive with EMEND 40 mg on Day 8 compared to the trough levels following administration of the oral contraceptive alone.

The coadministration of EMEND may reduce the efficacy of hormonal contraceptives (these can include birth control pills, skin patches, implants, and certain IUDs) during and for 28 days after administration of the last dose of EMEND. Alternative or back-up methods of contraception should be used during treatment with EMEND and for 1 month following the last dose of EMEND.

Midazolam

EMEND increased the AUC of midazolam, a sensitive CYP3A4 substrate, by 2.3-fold on Day 1 and 3.3-fold on Day 5, when a single oral dose of midazolam 2 mg was coadministered on Day 1 and Day 5 of a regimen of EMEND 125 mg on Day 1 and 80 mg/day on Days 2 through 5. The potential effects of increased plasma concentrations of midazolam or other benzodiazepines metabolized via CYP3A4 (alprazolam, triazolam) should be considered when coadministering these agents with EMEND (125 mg/80 mg). A single dose of EMEND (40 mg) increased the AUC of midazolam by 1.2-fold on Day 1, when a single oral dose of midazolam 2 mg was coadministered on Day 1 with EMEND 40 mg; this effect was not considered clinically important.

In another study with intravenous administration of midazolam, EMEND was given as 125 mg on Day 1 and 80 mg/day on Days 2 and 3, and midazolam 2 mg IV was given prior to the administration of the 3-day regimen of EMEND and on Days 4, 8, and 15. EMEND increased the AUC of midazolam by 25% on Day 4 and decreased the AUC of midazolam by 19% on Day 8 relative to the dosing of EMEND on Days 1 through 3. These effects were not considered clinically important. The AUC of midazolam on Day 15 was similar to that observed at baseline.

An additional study was completed with intravenous administration of midazolam and EMEND. Intravenous midazolam 2 mg was given 1 hour after oral administration of a single dose of EMEND 125 mg. The plasma AUC of midazolam was increased by 1.5-fold. Depending on clinical situations (e.g., elderly patients) and degree of monitoring available, dosage adjustment for intravenous midazolam may be necessary when it is coadministered with EMEND for the chemotherapy induced nausea and vomiting indication (125 mg on Day 1 followed by 80 mg on Days 2 and 3).

Effect of Other Agents on the Pharmacokinetics of Aprepitant

Aprepitant is a substrate for CYP3A4; therefore, coadministration of EMEND with drugs that inhibit CYP3A4 activity may result in increased plasma concentrations of aprepitant. Consequently, concomitant administration of EMEND with strong CYP3A4 inhibitors (e.g., ketoconazole, itraconazole, nefazodone, troleandomycin, clarithromycin, ritonavir, nelfinavir) should be approached with caution. Because moderate CYP3A4 inhibitors (e.g., diltiazem) result in a 2-fold increase in plasma concentrations of aprepitant, concomitant administration should also be approached with caution.

Aprepitant is a substrate for CYP3A4; therefore, coadministration of EMEND with drugs that strongly induce CYP3A4 activity (e.g., rifampin, carbamazepine, phenytoin) may result in reduced plasma concentrations of aprepitant that may result in decreased efficacy of EMEND.

Ketoconazole

When a single 125-mg dose of EMEND was administered on Day 5 of a 10-day regimen of 400 mg/day of ketoconazole, a strong CYP3A4 inhibitor, the AUC of aprepitant increased approximately 5-fold and the mean terminal half-life of aprepitant increased approximately 3-fold. Concomitant administration of EMEND with strong CYP3A4 inhibitors should be approached cautiously.

Rifampin

When a single 375-mg dose of EMEND was administered on Day 9 of a 14-day regimen of 600 mg/day of rifampin, a strong CYP3A4 inducer, the AUC of aprepitant decreased approximately 11-fold and the mean terminal half-life decreased approximately 3-fold. Coadministration of EMEND with drugs that induce CYP3A4 activity may result in reduced plasma concentrations and decreased efficacy of EMEND.

Additional Interactions

EMEND is unlikely to interact with drugs that are substrates for the P-glycoprotein transporter, as demonstrated by the lack of interaction of EMEND with digoxin in a clinical drug interaction study.

  • Diltiazem: In patients with mild to moderate hypertension, administration of aprepitant once daily, as a tablet formulation comparable to 230 mg of the capsule formulation, with diltiazem 120 mg 3 times daily for 5 days, resulted in a 2-fold increase of aprepitant AUC and a simultaneous 1.7-fold increase of diltiazem AUC. These pharmacokinetic effects did not result in clinically meaningful changes in ECG, heart rate or blood pressure beyond those changes induced by diltiazem alone.
  • Paroxetine: Coadministration of once daily doses of aprepitant, as a tablet formulation comparable to 85 mg or 170 mg of the capsule formulation, with paroxetine 20 mg once daily, resulted in a decrease in AUC by approximately 25% and Cmax by approximately 20% of both aprepitant and paroxetine.

Use in Specific Populations

Pregnancy

Pregnancy Category (FDA): B Reproduction studies have been performed in rats at oral doses up to 1000 mg/kg twice daily (plasma AUC0‑24hr of 31.3 mcg•hr/mL, about 1.6 times the human exposure at the recommended dose) and in rabbits at oral doses up to 25 mg/kg/day (plasma AUC0‑24hr of 26.9 mcg•hr/mL, about 1.4 times the human exposure at the recommended dose) and have revealed no evidence of impaired fertility or harm to the fetus due to aprepitant. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.
Pregnancy Category (AUS): There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Aprepitant (patient information) in women who are pregnant.

Labor and Delivery

There is no FDA guidance on use of Aprepitant (patient information) during labor and delivery.

Nursing Mothers

Aprepitant is excreted in the milk of rats. It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for possible serious adverse reactions in nursing infants from aprepitant and because of the potential for tumorigenicity shown for aprepitant in rodent carcinogenicity studies, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

Pediatric Use

Safety and effectiveness of EMEND in pediatric patients have not been established.

Geriatic Use

In 2 well-controlled chemotherapy-induced nausea and vomiting clinical studies, of the total number of patients (N=544) treated with EMEND, 31% were 65 and over, while 5% were 75 and over. In well-controlled postoperative nausea and vomiting clinical studies, of the total number of patients (N=1120) treated with EMEND, 7% were 65 and over, while 2% were 75 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects. Greater sensitivity of some older individuals cannot be ruled out. Dosage adjustment in the elderly is not necessary.

Gender

There is no FDA guidance on the use of Aprepitant (patient information) with respect to specific gender populations.

Race

There is no FDA guidance on the use of Aprepitant (patient information) with respect to specific racial populations.

Renal Impairment

No dosage adjustment is necessary for patients with renal impairment or for patients with end stage renal disease (ESRD) undergoing hemodialysis.

Hepatic Impairment

No dosage adjustment is necessary for patients with mild to moderate hepatic impairment (Child-Pugh score 5 to 9). There are no clinical data in patients with severe hepatic impairment (Child-Pugh score >9).

Females of Reproductive Potential and Males

There is no FDA guidance on the use of Aprepitant (patient information) in women of reproductive potentials and males.

Immunocompromised Patients

There is no FDA guidance one the use of Aprepitant (patient information) in patients who are immunocompromised.

Administration and Monitoring

Administration

There is limited information regarding Aprepitant (patient information) Administration in the drug label.

Monitoring

There is limited information regarding Aprepitant (patient information) Monitoring in the drug label.

IV Compatibility

There is limited information regarding the compatibility of Aprepitant (patient information) and IV administrations.

Overdosage

No specific information is available on the treatment of overdosage. Drowsiness and headache were reported in one patient who ingested 1440 mg of aprepitant. In the event of overdose, EMEND should be discontinued and general supportive treatment and monitoring should be provided. Because of the antiemetic activity of aprepitant, drug-induced emesis may not be effective. Aprepitant cannot be removed by hemodialysis.

Pharmacology

Template:Px
Aprepitant (patient information)
Systematic (IUPAC) name
5-([(2R,3S)-2-((R)-1-[3,5-bis(trifluoromethyl)phenyl]ethoxy)-3-(4-fluorophenyl)morpholino]methyl)-1H-1,2,4-triazol-3(2H)-one
Identifiers
CAS number 170729-80-3
ATC code A04AD12
PubChem 6918365
DrugBank DB00673
Chemical data
Formula Template:OrganicBox atomTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox 
Mol. mass 534.427 g/mol
SMILES eMolecules & PubChem
Pharmacokinetic data
Bioavailability 60-65%
Protein binding >95%
Metabolism Hepatic (mostly CYP3A4- mediated; some contributions by CYP2C19 & CYP1A2)
Half life 9-13 hours
Excretion Urine (5%), faeces (86%)
Therapeutic considerations
Pregnancy cat.

B1(AU) B(US)

Legal status

Prescription Only (S4)(AU) POM(UK) [[Prescription drug|Template:Unicode-only]](US)

Routes Oral

Mechanism of Action

Aprepitant is a selective high-affinity antagonist of human substance P/neurokinin 1 (NK1) receptors. Aprepitant has little or no affinity for serotonin (5-HT3), dopamine, and corticosteroid receptors, the targets of existing therapies for chemotherapy-induced nausea and vomiting (CINV) and postoperative nausea and vomiting (PONV).

Aprepitant has been shown in animal models to inhibit emesis induced by cytotoxic chemotherapeutic agents, such as cisplatin, via central actions. Animal and human Positron Emission Tomography (PET) studies with aprepitant have shown that it crosses the blood brain barrier and occupies brain NK1 receptors. Animal and human studies show that aprepitant augments the antiemetic activity of the 5-HT3-receptor antagonist ondansetron and the corticosteroid dexamethasone and inhibits both the acute and delayed phases of cisplatin-induced emesis.

Structure

Chemically described as 5-(2R,3S)-2-[(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethoxy]-3-(4-fluorophenyl)-4-morpholinyl]methyl]-1,2-dihydro-3H-1,2,4-triazol-3-one.

Its empirical formula is C23H21F7N4O3, and its structural formula is:

Pharmacodynamics

NK1 Receptor Occupancy

In two single-blind, multiple-dose, randomized, and placebo control studies, healthy young men received oral aprepitant doses of 10 mg (N=2), 30 mg (N=3), 100 mg (N=3) or 300 mg (N=5) once daily for 14 days with 2 or 3 subjects on placebo. Both plasma aprepitant concentration and NK1 receptor occupancy in the corpus striatum by positron emission tomography were evaluated, at predose and 24 hours after the last dose. At aprepitant plasma concentrations of ~10 ng/mL and ~100 ng/mL, the NK1 receptor occupancies were ~50% and ~90%, respectively. The oral aprepitant regimen for CINV produces mean trough plasma aprepitant concentrations >500 ng/mL, which would be expected to, based on the fitted curve with the Hill equation, result in >95% brain NK1 receptor occupancy. However, the receptor occupancy for either CINV or PONV dosing regimen has not been determined. In addition, the relationship between NK1 receptor occupancy and the clinical efficacy of aprepitant has not been established.

Cardiac Electrophysiology

In a randomized, double-blind, positive-controlled, thorough QTc study, a single 200-mg dose of fosaprepitant had no effect on the QTc interval. QT prolongation with the oral dosing regimens for CINV and PONV are not expected.

Pharmacokinetics

Absorption

Following oral administration of a single 40 mg dose of EMEND in the fasted state, mean area under the plasma concentration-time curve (AUC0‑∞) was 7.8 mcg•hr/mL and mean peak plasma concentration (Cmax) was 0.7 mcg/mL, occurring at approximately 3 hours postdose (Tmax). The absolute bioavailability at the 40‑mg dose has not been determined.

Following oral administration of a single 125-mg dose of EMEND on Day 1 and 80 mg once daily on Days 2 and 3, the AUC0-24hr was approximately 19.6 mcg•hr/mL and 21.2 mcg•hr/mL on Day 1 and Day 3, respectively. The Cmax of 1.6 mcg/mL and 1.4 mcg/mL were reached in approximately 4 hours (Tmax) on Day 1 and Day 3, respectively. At the dose range of 80-125 mg, the mean absolute oral bioavailability of aprepitant is approximately 60 to 65%. Oral administration of the capsule with a standard high-fat breakfast had no clinically meaningful effect on the bioavailability of aprepitant.

The pharmacokinetics of aprepitant are non-linear across the clinical dose range. In healthy young adults, the increase in AUC0‑∞ was 26% greater than dose proportional between 80‑mg and 125‑mg single doses administered in the fed state.

Distribution

Aprepitant is greater than 95% bound to plasma proteins. The mean apparent volume of distribution at steady state (Vdss) is approximately 70 L in humans. Aprepitant crosses the placenta in rats and rabbits and crosses the blood brain barrier in humans.

Metabolism

Aprepitant undergoes extensive metabolism. In vitro studies using human liver microsomes indicate that aprepitant is metabolized primarily by CYP3A4 with minor metabolism by CYP1A2 and CYP2C19. Metabolism is largely via oxidation at the morpholine ring and its side chains. No metabolism by CYP2D6, CYP2C9, or CYP2E1 was detected. In healthy young adults, aprepitant accounts for approximately 24% of the radioactivity in plasma over 72 hours following a single oral 300-mg dose of [14C]-aprepitant, indicating a substantial presence of metabolites in the plasma. Seven metabolites of aprepitant, which are only weakly active, have been identified in human plasma.

Excretion

Following administration of a single IV 100-mg dose of [14C]-aprepitant prodrug to healthy subjects, 57% of the radioactivity was recovered in urine and 45% in feces. A study was not conducted with radiolabeled capsule formulation. The results after oral administration may differ.

Aprepitant is eliminated primarily by metabolism; aprepitant is not renally excreted. The apparent plasma clearance of aprepitant ranged from approximately 62 to 90 mL/min. The apparent terminal half-life ranged from approximately 9 to 13 hours.

Nonclinical Toxicology

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenicity studies were conducted in Sprague-Dawley rats and in CD-1 mice for 2 years. In the rat carcinogenicity studies, animals were treated with oral doses ranging from 0.05 to 1000 mg/kg twice daily. The highest dose produced a systemic exposure to aprepitant (plasma AUC0‑24hr) of 0.7 to 1.6 times the human exposure (AUC0‑24hr = 19.6 mcg•hr/mL) at the recommended dose of 125 mg/day. Treatment with aprepitant at doses of 5 to 1000 mg/kg twice daily caused an increase in the incidences of thyroid follicular cell adenomas and thyroid carcinomas in male rats. In female rats, it produced hepatocellular adenomas at 5 to 1000 mg/kg twice daily and hepatocellular carcinomas and thyroid follicular cell adenomas at 125 to 1000 mg/kg twice daily. In the mouse carcinogenicity studies, the animals were treated with oral doses ranging from 2.5 to 2000 mg/kg/day. The highest dose produced a systemic exposure of about 2.8 to 3.6 times the human exposure at the recommended dose. Treatment with aprepitant produced skin fibrosarcomas at 125 and 500 mg/kg/day doses in male mice.

Aprepitant was not genotoxic in the Ames test, the human lymphoblastoid cell (TK6) mutagenesis test, the rat hepatocyte DNA strand break test, the Chinese hamster ovary (CHO) cell chromosome aberration test and the mouse micronucleus test.

Aprepitant did not affect the fertility or general reproductive performance of male or female rats at doses up to the maximum feasible dose of 1000 mg/kg twice daily (providing exposure in male rats lower than the exposure at the recommended human dose and exposure in female rats at about 1.6 times the human exposure).

Clinical Studies

Prevention of Chemotherapy Induced Nausea and Vomiting (CINV)

Oral administration of EMEND in combination with ondansetron and dexamethasone (aprepitant regimen) has been shown to prevent acute and delayed nausea and vomiting associated with highly emetogenic chemotherapy including high-dose cisplatin, and nausea and vomiting associated with moderately emetogenic chemotherapy.

=====Highly Emetogenic Chemotherapy (HEC) In 2 multicenter, randomized, parallel, double-blind, controlled clinical studies, the aprepitant regimen (see Table 6) was compared with standard therapy in patients receiving a chemotherapy regimen that included cisplatin >50 mg/m2 (mean cisplatin dose = 80.2 mg/m2). Of the 550 patients who were randomized to receive the aprepitant regimen, 42% were women, 58% men, 59% White, 3% Asian, 5% Black, 12% Hispanic American, and 21% Multi-Racial. The aprepitant-treated patients in these clinical studies ranged from 14 to 84 years of age, with a mean age of 56 years. 170 patients were 65 years or older, with 29 patients being 75 years or older. Patients (N = 1105) were randomized to either the aprepitant regimen (N = 550) or standard therapy (N = 555). The treatment regimens are defined in Table 5.

How Supplied

There is limited information regarding Aprepitant (patient information) How Supplied in the drug label.

Storage

There is limited information regarding Aprepitant (patient information) Storage in the drug label.

Images

Drug Images

{{#ask: Page Name::Aprepitant (patient information) |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}

Package and Label Display Panel

{{#ask: Label Page::Aprepitant (patient information) |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}

Patient Counseling Information

There is limited information regarding Aprepitant (patient information) Patient Counseling Information in the drug label.

Precautions with Alcohol

Alcohol-Aprepitant (patient information) interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

Brand Names

There is limited information regarding Aprepitant (patient information) Brand Names in the drug label.

Look-Alike Drug Names

There is limited information regarding Aprepitant (patient information) Look-Alike Drug Names in the drug label.

Drug Shortage Status

Price

References

The contents of this FDA label are provided by the National Library of Medicine.