Voriconazole (oral)

Revision as of 01:33, 26 May 2015 by Adeel Jamil (talk | contribs)
Jump to navigation Jump to search

Voriconazole (oral)
Adult Indications & Dosage
Pediatric Indications & Dosage
Contraindications
Warnings & Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Administration & Monitoring
Overdosage
Pharmacology
Clinical Studies
How Supplied
Images
Patient Counseling Information
Precautions with Alcohol
Brand Names
Look-Alike Names

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Adeel Jamil, M.D. [2]

Disclaimer

WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.

Overview

Voriconazole (oral) is an antifungal triazole that is FDA approved for the treatment of invasive aspergillosis, candidemia in non-neutropenic patients, esophageal candidiasis, serious fungal infections caused by scedosporium apiospermum and fusarium spp, including fusarium solani, in Patients intolerant of, or Refractory to, other therapy. Common adverse reactions include visual disturbances, fever, nausea, rash, vomiting, chills, headache, abnormal liver function test, tachycardia, and hallucinations.

Adult Indications and Dosage

FDA-Labeled Indications and Dosage (Adult)

  • Voriconazole tablets are indicated for use in patients 12 years of age and older in the treatment of the following fungal infections:
Invasive Aspergillosis
  • In clinical trials, the majority of isolates recovered were Aspergillus fumigatus. There was a small number of cases of culture-proven disease due to species of Aspergillus other than A. fumigatus.
Candidemia in Non-neutropenic Patients and the Following Candida infections: Disseminated Infections in Skin and Infections in Abdomen, Kidney, Bladder Wall, and Wounds
Esophageal Candidiasis
Serious Fungal Infections Caused by Scedosporium apiospermum (Asexual Form of Pseudallescheria boydii) and Fusarium spp. Including Fusarium solani, in Patients Intolerant of, or Refractory to, Other Therapy
  • Specimens for fungal culture and other relevant laboratory studies (including histopathology) should be obtained prior to therapy to isolate and identify causative organism(s). Therapy may be instituted before the results of the cultures and other laboratory studies are known. However, once these results become available, antifungal therapy should be adjusted accordingly.

Dosing Information

Instructions for Use in All Patients
  • Voriconazole tablets should be taken at least one hour before or after a meal.
Recommended Dosing in Adults
  • Invasive Aspergillosis and Serious Fungal Infections due to Fusarium Spp. and Scedosporium Apiospermum
  • See Table 1. Therapy must be initiated with the specified loading dose regimen of intravenous voriconazole on Day 1 followed by the recommended maintenance dose regimen. Intravenous treatment should be continued for at least 7 days. Once the patient has clinically improved and can tolerate medication given by mouth, the oral tablet form or oral suspension form of voriconazole may be utilized. The recommended oral maintenance dose of 200 mg achieves a voriconazole exposure similar to 3 mg/kg IV; a 300 mg oral dose achieves an exposure similar to 4 mg/kg IV. Switching between the intravenous and oral formulations is appropriate because of the high bioavailability of the oral formulation in adults [see CLINICAL PHARMACOLOGY (12)].
  • Candidemia in Non-neutropenic Patients and Other Deep Tissue Candida Infections
  • See Table 1. Patients should be treated for at least 14 days following resolution of symptoms or following last positive culture, whichever is longer.
  • Esophageal Candidiasis
  • See Table 1. Patients should be treated for a minimum of 14 days and for at least 7 days following resolution of symptoms.

tab

  • Increase dose when voriconazole is co-administered with phenytoin or efavirenz (7); Decrease dose in patients with hepatic impairment (2.7)
  • In healthy volunteer studies, the 200 mg oral q12h dose provided an exposure (AUCτ) similar to a 3 mg/kg IV q12h dose; the 300 mg oral q12h dose provided an exposure (AUCτ) similar to a 4 mg/kg IV q12h dose [see CLINICAL PHARMACOLOGY (12)].
  • Adult patients who weigh less than 40 kg should receive half of the oral maintenance dose.
  • In a clinical study of invasive aspergillosis, the median duration of intravenous voriconazole therapy was 10 days (range 2 to 85 days). The median duration of oral voriconazole therapy was 76 days (range 2 to 232 days) [see CLINICAL STUDIES (14.1)].
  • In clinical trials, patients with candidemia received 3 mg/kg IV q12h as primary therapy, while patients with other deep tissue Candida infections received 4 mg/kg q12h as salvage therapy. Appropriate dose should be based on the severity and nature of the infection
  • Not evaluated in patients with esophageal candidiasis.
Dosage Adjustment
  • If patient response is inadequate, the oral maintenance dose may be increased from 200 mg every 12 hours (similar to 3 mg/kg IV q12h) to 300 mg every 12 hours (similar to 4 mg/kg IV q12h). For adult patients weighing less than 40 kg, the oral maintenance dose may be increased from 100 mg every 12 hours to 150 mg every 12 hours. If patient is unable to tolerate 300 mg orally every 12 hours, reduce the oral maintenance dose by 50 mg steps to a minimum of 200 mg every 12 hours (or to 100 mg every 12 hours for adult patients weighing less than 40 kg).
  • If patient is unable to tolerate 4 mg/kg IV q12h, reduce the intravenous maintenance dose to 3 mg/kg q12h.
  • The maintenance dose of voriconazole should be increased when co-administered with phenytoin or efavirenz.
  • The maintenance dose of voriconazole should be reduced in patients with mild to moderate hepatic impairment, Child-Pugh Class A and B [see DOSAGE AND ADMINISTRATION (2.7)]. There are no PK data to allow for dosage adjustment recommendations in patients with severe hepatic impairment (Child-Pugh Class C).
  • Duration of therapy should be based on the severity of the patient’s underlying disease, recovery from immunosuppression, and clinical response.
Use in Patients With Hepatic Impairment
  • In the clinical program, patients were included who had baseline liver function tests (ALT, AST) up to 5 times the upper limit of normal. No dose adjustment is necessary in patients with this degree of abnormal liver function, but continued monitoring of liver function tests for further elevations is recommended.
  • It is recommended that the standard loading dose regimens be used but that the maintenance dose be halved in patients with mild to moderate hepatic cirrhosis (Child-Pugh Class A and B).
  • Voriconazole tablets have not been studied in patients with severe hepatic cirrhosis (Child-Pugh Class C) or in patients with chronic hepatitis B or chronic hepatitis C disease. Voriconazole tablets have been associated with elevations in liver function tests and clinical signs of liver damage, such as jaundice, and should only be used in patients with severe hepatic impairment if the benefit outweighs the potential risk. Patients with hepatic insufficiency must be carefully monitored for drug toxicity.
Use in Patients With Renal Impairment
  • The pharmacokinetics of orally administered voriconazole tablets are not significantly affected by renal impairment. Therefore, no adjustment is necessary for oral dosing in patients with mild to severe renal impairment.
  • In patients with moderate or severe renal impairment (creatinine clearance <50 mL/min), accumulation of the intravenous vehicle, SBECD, occurs. Oral voriconazole should be administered to these patients, unless an assessment of the benefit/risk to the patient justifies the use of intravenous voriconazole. Serum creatinine levels should be closely monitored in these patients, and, if increases occur, consideration should be given to changing to oral voriconazole therapy.
  • Voriconazole is hemodialyzed with clearance of 121 mL/min. The intravenous vehicle, SBECD, is hemodialyzed with clearance of 55 mL/min. A 4-hour hemodialysis session does not remove a sufficient amount of voriconazole to warrant dose adjustment.

Off-Label Use and Dosage (Adult)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Voriconazole (oral) in adult patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Voriconazole (oral) in adult patients.

Pediatric Indications and Dosage

FDA-Labeled Indications and Dosage (Pediatric)

There is limited information regarding Voriconazole (oral) FDA-Labeled Indications and Dosage (Pediatric) in the drug label.

Off-Label Use and Dosage (Pediatric)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Voriconazole (oral) in pediatric patients.

Non–Guideline-Supported Use

There is limited information regarding Off-Label Non–Guideline-Supported Use of Voriconazole (oral) in pediatric patients.

Contraindications

  • Voriconazole tablets are contraindicated in patients with known hypersensitivity to voriconazole or its excipients. There is no information regarding cross-sensitivity between voriconazole and other azole antifungal agents. Caution should be used when prescribing voriconazole to patients with hypersensitivity to other azoles.
  • Coadministration of terfenadine, astemizole, cisapride, pimozide or quinidine with voriconazole tablets is contraindicated because increased plasma concentrations of these drugs can lead to QT prolongation and rare occurrences of torsade de pointes.
  • Coadministration of voriconazole with sirolimus is contraindicated because voriconazole significantly increases sirolimus concentrations.
  • Coadministration of voriconazole with rifampin, carbamazepine and long-acting barbiturates is contraindicated because these drugs are likely to decrease plasma voriconazole concentrations significantly.
  • Coadministration of standard doses of voriconazole with efavirenz doses of 400 mg q24h or higher is contraindicated, because of efavirenz significantly decreases plasma voriconazole concentrations in healthy subjects at these doses. Voriconazole also significantly increases efavirenz plasma concentrations.
  • Coadministration of voriconazole with high-dose ritonavir (400 mg q12h) is contraindicated because ritonavir (400 mg q12h) significantly decreases plasma voriconazole concentrations. Coadministration of voriconazole and low-dose ritonavir (100 mg q12h) should be avoided, unless an assessment of the benefit/risk to the patient justifies the use of voriconazole.
  • Coadministration of voriconazole with rifabutin is contraindicated since voriconazole significantly increases rifabutin plasma concentrations and rifabutin also significantly decreases voriconazole plasma concentrations.
  • Coadministration of voriconazole with ergot alkaloids (ergotamine and dihydroergotamine) is contraindicated because voriconazole may increase the plasma concentration of ergot alkaloids, which may lead to ergotism.
  • Coadministration of voriconazole with St. John’s Wort is contraindicated because this herbal supplement may decrease voriconazole plasma concentration.

Warnings

Drug Interactions
  • See Table 6 for a listing of drugs that may significantly alter voriconazole concentrations. Also, see Table 7 for a listing of drugs that may interact with voriconazole resulting in altered pharmacokinetics or pharmacodynamics of the other drug.
Hepatic Toxicity
  • In clinical trials, there have been uncommon cases of serious hepatic reactions during treatment with voriconazole (including clinical hepatitis, cholestasis and fulminant hepatic failure, including fatalities). Instances of hepatic reactions were noted to occur primarily in patients with serious underlying medical conditions (predominantly hematological malignancy). Hepatic reactions, including hepatitis and jaundice, have occurred among patients with no other identifiable risk factors. Liver dysfunction has usually been reversible on discontinuation of therapy.
Monitoring of hepatic function
  • Liver function tests should be evaluated at the start of and during the course of voriconazole therapy. Patients who develop abnormal liver function tests during voriconazole therapy should be monitored for the development of more severe hepatic injury. Patient management should include laboratory evaluation of hepatic function (particularly liver function tests and bilirubin). Discontinuation of voriconazole must be considered if clinical signs and symptoms consistent with liver disease develop that may be attributable to voriconazole.
Visual Disturbances
  • The effect of voriconazole on visual function is not known if treatment continues beyond 28 days. There have been post-marketing reports of prolonged visual adverse events, including optic neuritis and papilledema. If treatment continues beyond 28 days, visual function including visual acuity, visual field and color perception should be monitored.
Embryo Fetal Toxicity
  • Voriconazole can cause fetal harm when administered to a pregnant woman.
  • In animals, voriconazole administration was associated with teratogenicity, embryotoxicity, increased gestational length, dystocia and embryomortality.
  • If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be informed of the potential hazard to the fetus.
Galactose Intolerance
  • Voriconazole tablets contain lactose and should not be given to patients with rare hereditary problems of galactose intolerance, Lapp lactase deficiency or glucose-galactose malabsorption.
Arrhythmias and QT Prolongation
  • Some azoles, including voriconazole, have been associated with prolongation of the QT interval on the electrocardiogram. During clinical development and post-marketing surveillance, there have been rare cases of arrhythmias, (including ventricular arrhythmias such as torsade de pointes), cardiac arrests and sudden deaths in patients taking voriconazole. These cases usually involved seriously ill patients with multiple confounding risk factors, such as history of cardiotoxic chemotherapy, cardiomyopathy, hypokalemia and concomitant medications that may have been contributory.
  • Voriconazole should be administered with caution to patients with these potentially proarrhythmic conditions.
  • Rigorous attempts to correct potassium, magnesium and calcium should be made before starting voriconazole.
Infusion Related Reactions
  • During infusion of the intravenous formulation of voriconazole in healthy subjects, anaphylactoid-type reactions, including flushing, fever, sweating, tachycardia, chest tightness, dyspnea, faintness, nausea, pruritus and rash, have occurred uncommonly. Symptoms appeared immediately upon initiating the infusion. Consideration should be given to stopping the infusion should these reactions occur.
Laboratory Tests
  • Electrolyte disturbances such as hypokalemia, hypomagnesemia and hypocalcemia should be corrected prior to initiation of voriconazole therapy.
  • Patient management should include laboratory evaluation of renal (particularly serum creatinine) and hepatic function (particularly liver function tests and bilirubin).
Patients With Hepatic Impairment
  • It is recommended that the standard loading dose regimens be used but that the maintenance dose be halved in patients with mild to moderate hepatic cirrhosis (Child-Pugh Class A and B) receiving voriconazole.
  • Voriconazole has not been studied in patients with severe cirrhosis (Child-Pugh Class C). Voriconazole has been associated with elevations in liver function tests and clinical signs of liver damage, such as jaundice, and should only be used in patients with severe hepatic insufficiency if the benefit outweighs the potential risk. Patients with hepatic insufficiency must be carefully monitored for drug toxicity.
Patients With Renal Impairment
  • In patients with moderate to severe renal dysfunction (creatinine clearance <50 mL/min), accumulation of the intravenous vehicle, SBECD, occurs. Oral voriconazole should be administered to these patients, unless an assessment of the benefit/risk to the patient justifies the use of intravenous voriconazole. Serum creatinine levels should be closely monitored in these patients, and if increases occur, consideration should be given to changing to oral voriconazole therapy.
Monitoring of Renal Function=
  • Acute renal failure has been observed in patients undergoing treatment with voriconazole. Patients being treated with voriconazole are likely to be treated concomitantly with nephrotoxic medications and have concurrent conditions that may result in decreased renal function.
  • Patients should be monitored for the development of abnormal renal function. This should include laboratory evaluation, particularly serum creatinine.
Monitoring of Pancreatic Function
  • Patients with risk factors for acute pancreatitis (e.g., recent chemotherapy, hematopoietic stem cell transplantation [HSCT]) should be monitored for the development of pancreatitis during voriconazole treatment.
Dermatological Reactions
  • Serious exfoliative cutaneous reactions, such as Stevens-Johnson syndrome, have been reported during treatment with voriconazole. If a patient develops an exfoliative cutaneous reaction, voriconazole should be discontinued.
  • In addition voriconazole has been associated with photosensitivity skin reaction. Patients should avoid intense or prolonged exposure to direct sunlight during voriconazole tablets treatment. In patients with photosensitivity skin reactions squamous cell carcinoma of the skin and melanoma have been reported during long-term therapy. If a patient develops a skin lesion consistent with squamous cell carcinoma or melanoma, voriconazole should be discontinued.
Skeletal Adverse Events
  • Fluorosis and periostitis have been reported during long-term voriconazole therapy. If a patient develops skeletal pain and radiologic findings compatible with fluorosis or periostitis, voriconazole should be discontinued.

Adverse Reactions

Clinical Trials Experience

  • Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Overview
  • The most frequently reported adverse events (all causalities) in the therapeutic trials were visual disturbances (18.7%), fever (5.7%), nausea (5.4%), rash (5.3%), vomiting (4.4%), chills (3.7%), headache (3%), liver function test increased (2.7%), tachycardia (2.4%), hallucinations (2.4%). The treatment-related adverse events which most often led to discontinuation of voriconazole therapy were elevated liver function tests, rash, and visual disturbances.
Clinical Trial Experience in Adults
  • The data described in Table 2 reflect exposure to voriconazole in 1,655 patients in the therapeutic studies. This represents a heterogeneous population, including immunocompromised patients, e.g., patients with hematological malignancy or HIV and non-neutropenic patients. This subgroup does not include healthy subjects and patients treated in the compassionate use and non-therapeutic studies. This patient population was 62% male, had a mean age of 46 years (range 11 to 90, including 51 patients aged 12 to 18 years), and was 78% White and 10% Black. Five hundred sixty one patients had a duration of voriconazole therapy of greater than 12 weeks, with 136 patients receiving voriconazole for over six months. Table 2 includes all adverse events which were reported at an incidence of ≥2% during voriconazole therapy in the all therapeutic studies population, studies 307/602 and 608 combined, or study 305, as well as events of concern which occurred at an incidence of <2%.
  • In study 307/602, 381 patients (196 on voriconazole, 185 on amphotericin B) were treated to compare voriconazole to amphotericin B followed by other licensed antifungal therapy in the primary treatment of patients with acute invasive aspergillosis. The rate of discontinuation from voriconazole study medication due to adverse events was 21.4% (42/196 patients). In study 608, 403 patients with candidemia were treated to compare voriconazole (272 patients) to the regimen of amphotericin B followed by fluconazole (131 patients). The rate of discontinuation from voriconazole study medication due to adverse events was 19.5% out of 272 patients. Study 305 evaluated the effects of oral voriconazole (200 patients) and oral fluconazole (191 patients) in the treatment of esophageal candidiasis. The rate of discontinuation from voriconazole study medication in Study 305 due to adverse events was 7% (14/200 patients). Laboratory test abnormalities for these studies are discussed under Clinical Laboratory Values below.

tab

Visual Disturbances
  • Voriconazole treatment-related visual disturbances are common. In therapeutic trials, approximately 21% of patients experienced abnormal vision, color vision change and/or photophobia. Visual disturbances may be associated with higher plasma concentrations and/or doses.
  • There have been post-marketing reports of prolonged visual adverse events, including optic neuritis and papilledema.
  • The mechanism of action of the visual disturbance is unknown, although the site of action is most likely to be within the retina. In a study in healthy subjects investigating the effect of 28-day treatment with voriconazole on retinal function, voriconazole caused a decrease in the electroretinogram (ERG) waveform amplitude, a decrease in the visual field, and an alteration in color perception. The ERG measures electrical currents in the retina. The effects were noted early in administration of voriconazole and continued through the course of study drug dosing. Fourteen days after end of dosing, ERG, visual fields and color perception returned to normal.
Dermatological Reactions
  • Dermatological reactions were common in the patients treated with voriconazole. The mechanism underlying these dermatologic adverse events remains unknown.
  • Serious cutaneous reactions, including Stevens-Johnson syndrome, toxic epidermal necrolysis and erythema multiforme have been reported during treatment with voriconazole. If a patient develops an exfoliative cutaneous reaction, voriconazole should be discontinued.
  • In addition, voriconazole has been associated with photosensitivity skin reactions. Patients should avoid strong, direct sunlight during voriconazole therapy. In patients with photosensitivity skin reactions, squamous cell carcinoma of the skin and melanoma have been reported during long-term therapy. If a patient develops a skin lesion consistent with squamous cell carcinoma or melanoma, voriconazole should be discontinued.
Less Common Adverse Events
  • The following adverse events occurred in <2% of all voriconazole-treated patients in all therapeutic studies (N=1,655). This listing includes events where a causal relationship to voriconazole cannot be ruled out or those which may help the physician in managing the risks to the patients. The list does not include events included in Table 2 above and does not include every event reported in the voriconazole clinical program.
Body as a Whole
  • Abdominal pain, abdomen enlarged, allergic reaction, anaphylactoid reaction, ascites, asthenia, back pain, chest pain, cellulitis, edema, face edema, flank pain, flu syndrome, graft versus host reaction, granuloma, infection, bacterial infection, fungal infection, injection site pain, injection site infection/inflammation, mucous membrane disorder, multi-organ failure, pain, pelvic pain, peritonitis, sepsis, substernal chest pain.
Cardiovascular
  • Atrial arrhythmia, atrial fibrillation, AV block complete, bigeminy, bradycardia, bundle branch block, cardiomegaly, cardiomyopathy, cerebral hemorrhage, cerebral ischemia, cerebrovascular accident, congestive heart failure, deep thrombophlebitis, endocarditis, extrasystoles, heart arrest, hypertension, hypotension, myocardial infarction, nodal arrhythmia, palpitation, phlebitis, postural hypotension, pulmonary embolus, QT interval prolonged, supraventricular extrasystoles, supraventricular tachycardia, syncope, thrombophlebitis, vasodilatation, ventricular arrhythmia, ventricular fibrillation, ventricular tachycardia (including torsade de pointes).
Digestive
  • Anorexia, cheilitis, cholecystitis, cholelithiasis, constipation, diarrhea, duodenal ulcer perforation, duodenitis, dyspepsia, dysphagia, dry mouth, esophageal ulcer, esophagitis, flatulence, gastroenteritis, gastrointestinal hemorrhage, GGT/LDH elevated, gingivitis, glossitis, gum hemorrhage, gum hyperplasia, hematemesis, hepatic coma, hepatic failure, hepatitis, intestinal perforation, intestinal ulcer, jaundice, enlarged liver, melena, mouth ulceration, pancreatitis, parotid gland enlargement, periodontitis, proctitis, pseudomembranous colitis, rectal disorder, rectal hemorrhage, stomach ulcer, stomatitis, tongue edema.
Endocrine
  • Adrenal cortex insufficiency, diabetes insipidus, hyperthyroidism, hypothyroidism.
Hemic and Lymphatic
  • Agranulocytosis, anemia (macrocytic, megaloblastic, microcytic, normocytic), aplastic anemia, hemolytic anemia, bleeding time increased, cyanosis, DIC, ecchymosis, eosinophilia, hypervolemia, leukopenia, lymphadenopathy, lymphangitis, marrow depression, pancytopenia, petechia, purpura, enlarged spleen, thrombocytopenia, thrombotic thrombocytopenic purpura.
Metabolic and Nutritional
  • Albuminuria, BUN increased, creatine phosphokinase increased, edema, glucose tolerance decreased, hypercalcemia, hypercholesteremia, hyperglycemia, hyperkalemia, hypermagnesemia, hypernatremia, hyperuricemia, hypocalcemia, hypoglycemia, hypomagnesemia, hyponatremia, hypophosphatemia, peripheral edema, uremia.
Musculoskeletal
  • Arthralgia, arthritis, bone necrosis, bone pain, leg cramps, myalgia, myasthenia, myopathy, osteomalacia, osteoporosis.
Nervous System
  • Abnormal dreams, acute brain syndrome, agitation, akathisia, amnesia, anxiety, ataxia, brain edema, coma, confusion, convulsion, delirium, dementia, depersonalization, depression, diplopia, dizziness, encephalitis, encephalopathy, euphoria, Extrapyramidal Syndrome, grand mal convulsion, Guillain-Barré syndrome, hypertonia, hypesthesia, insomnia, intracranial hypertension, libido decreased, neuralgia, neuropathy, nystagmus, oculogyric crisis, paresthesia, psychosis, somnolence, suicidal ideation, tremor, vertigo.
Respiratory System
  • Cough increased, dyspnea, epistaxis, hemoptysis, hypoxia, lung edema, pharyngitis, pleural effusion, pneumonia, respiratory disorder, respiratory distress syndrome, respiratory tract infection, rhinitis, sinusitis, voice alteration.
Skin and Appendages
  • Alopecia, angioedema, contact dermatitis, discoid lupus erythematosis, eczema, erythema multiforme, exfoliative dermatitis, fixed drug eruption, furunculosis, herpes simplex, maculopapular rash, melanoma, melanosis, photosensitivity skin reaction, pruritus, pseudoporphyria, psoriasis, skin discoloration, skin disorder, skin dry, Stevens-Johnson syndrome, squamous cell carcinoma, sweating, toxic epidermal necrolysis, urticarial.
Special Senses
  • Abnormality of accommodation, blepharitis, color blindness, conjunctivitis, corneal opacity, deafness, ear pain, eye pain, eye hemorrhage, dry eyes, hypoacusis, keratitis, keratoconjunctivitis, mydriasis, night blindness, optic atrophy, optic neuritis, otitis externa, papilledema, retinal hemorrhage, retinitis, scleritis, taste loss, taste perversion, tinnitus, uveitis, visual field defect.
Urogenital
  • Anuria, blighted ovum, creatinine clearance decreased, dysmenorrhea, dysuria, epididymitis, glycosuria, hemorrhagic cystitis, hematuria, hydronephrosis, impotence, kidney pain, kidney tubular necrosis, metrorrhagia, nephritis, nephrosis, oliguria, scrotal edema, urinary incontinence, urinary retention, urinary tract infection, uterine hemorrhage, vaginal hemorrhage.
Clinical Laboratory Values
  • The overall incidence of clinically significant transaminase abnormalities in all therapeutic studies was 12.4% (206/1,655) of patients treated with voriconazole. Increased incidence of liver function test abnormalities may be associated with higher plasma concentrations and/or doses. The majority of abnormal liver function tests either resolved during treatment without dose adjustment or following dose adjustment, including discontinuation of therapy.
  • Voriconazole has been infrequently associated with cases of serious hepatic toxicity including cases of jaundice and rare cases of hepatitis and hepatic failure leading to death. Most of these patients had other serious underlying conditions.
  • Liver function tests should be evaluated at the start of and during the course of voriconazole therapy. Patients who develop abnormal liver function tests during voriconazole therapy should be monitored for the development of more severe hepatic injury. Patient management should include laboratory evaluation of hepatic function (particularly liver function tests and bilirubin). Discontinuation of voriconazole tablets must be considered if clinical signs and symptoms consistent with liver disease develop that may be attributable to voriconazole tablets.
  • Acute renal failure has been observed in severely ill patients undergoing treatment with voriconazole tablets. Patients being treated with voriconazole are likely to be treated concomitantly with nephrotoxic medications and have concurrent conditions that may result in decreased renal function. It is recommended that patients are monitored for the development of abnormal renal function. This should include laboratory evaluation, particularly serum creatinine.
  • Tables 3 to 5 show the number of patients with hypokalemia and clinically significant changes in renal and liver function tests in three randomized, comparative multicenter studies. In study 305, patients with esophageal candidiasis were randomized to either oral voriconazole or oral fluconazole. In study 307/602, patients with definite or probable invasive aspergillosis were randomized to either voriconazole or amphotericin B therapy. In study 608, patients with candidemia were randomized to either voriconazole or the regimen of amphotericin B followed by fluconazole.

tab

tab

tab

Postmarketing Experience

  • The following adverse reactions have been identified during post approval use of voriconazole. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Skeletal:
  • Fluorosis and periostitis have been reported during long-term voriconazole therapy.

Drug Interactions

There is limited information regarding Voriconazole (oral) Drug Interactions in the drug label.

Use in Specific Populations

Pregnancy

Pregnancy Category (FDA): There is no FDA guidance on usage of Voriconazole (oral) in women who are pregnant.
Pregnancy Category (AUS): There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Voriconazole (oral) in women who are pregnant.

Labor and Delivery

There is no FDA guidance on use of Voriconazole (oral) during labor and delivery.

Nursing Mothers

There is no FDA guidance on the use of Voriconazole (oral) in women who are nursing.

Pediatric Use

There is no FDA guidance on the use of Voriconazole (oral) in pediatric settings.

Geriatic Use

There is no FDA guidance on the use of Voriconazole (oral) in geriatric settings.

Gender

There is no FDA guidance on the use of Voriconazole (oral) with respect to specific gender populations.

Race

There is no FDA guidance on the use of Voriconazole (oral) with respect to specific racial populations.

Renal Impairment

There is no FDA guidance on the use of Voriconazole (oral) in patients with renal impairment.

Hepatic Impairment

There is no FDA guidance on the use of Voriconazole (oral) in patients with hepatic impairment.

Females of Reproductive Potential and Males

There is no FDA guidance on the use of Voriconazole (oral) in women of reproductive potentials and males.

Immunocompromised Patients

There is no FDA guidance one the use of Voriconazole (oral) in patients who are immunocompromised.

Administration and Monitoring

Administration

  • Oral

Monitoring

There is limited information regarding Voriconazole (oral) Monitoring in the drug label.

IV Compatibility

There is limited information regarding the compatibility of Voriconazole (oral) and IV administrations.

Overdosage

There is limited information regarding Voriconazole (oral) overdosage. If you suspect drug poisoning or overdose, please contact the National Poison Help hotline (1-800-222-1222) immediately.

Pharmacology

Template:Px
Voriconazole (oral)
Systematic (IUPAC) name
(2R,3S)-2-(2,4-Difluorophenyl)-3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl)butan-2-ol
Identifiers
CAS number 137234-62-9
ATC code J02AC03
PubChem 71616
DrugBank DB00582
Chemical data
Formula Template:OrganicBox atomTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBox atomTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBoxTemplate:OrganicBox 
Mol. mass 349.311 g/mol
SMILES eMolecules & PubChem
Pharmacokinetic data
Bioavailability 96%
Protein binding 58%
Metabolism Hepatic cytochrome P450 enzymes CYP2C19, CYP2C9, CYP3A4
Half life Dose-dependent
Excretion ?
Therapeutic considerations
Licence data

EUUS

Pregnancy cat.

D

Legal status

Template:Unicode Prescription only

Routes IV, oral

Mechanism of Action

There is limited information regarding Voriconazole (oral) Mechanism of Action in the drug label.

Structure

There is limited information regarding Voriconazole (oral) Structure in the drug label.

Pharmacodynamics

There is limited information regarding Voriconazole (oral) Pharmacodynamics in the drug label.

Pharmacokinetics

There is limited information regarding Voriconazole (oral) Pharmacokinetics in the drug label.

Nonclinical Toxicology

There is limited information regarding Voriconazole (oral) Nonclinical Toxicology in the drug label.

Clinical Studies

There is limited information regarding Voriconazole (oral) Clinical Studies in the drug label.

How Supplied

There is limited information regarding Voriconazole (oral) How Supplied in the drug label.

Storage

There is limited information regarding Voriconazole (oral) Storage in the drug label.

Images

Drug Images

{{#ask: Page Name::Voriconazole (oral) |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}

Package and Label Display Panel

{{#ask: Label Page::Voriconazole (oral) |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}

Patient Counseling Information

There is limited information regarding Voriconazole (oral) Patient Counseling Information in the drug label.

Precautions with Alcohol

Alcohol-Voriconazole (oral) interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

Brand Names

There is limited information regarding Voriconazole (oral) Brand Names in the drug label.

Look-Alike Drug Names

There is limited information regarding Voriconazole (oral) Look-Alike Drug Names in the drug label.

Drug Shortage Status

Price

References

The contents of this FDA label are provided by the National Library of Medicine.