Astrocytoma pathophysiology
Astrocytoma Microchapters |
Diagnosis |
---|
Treatment |
Case Study |
Astrocytoma pathophysiology On the Web |
American Roentgen Ray Society Images of Astrocytoma pathophysiology |
Risk calculators and risk factors for Astrocytoma pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Shivali Marketkar, M.B.B.S. [2]
Overview
Astrocytomas have a predilection for the cerebrum, cerebellum, hypothalamus, pons, and optic nerve and chiasm. Although astrocytomas have many different histological characteristics, the most common type is the well-differentiated fibrillary astrocytoma. These tumors express glial fibrillary acidic protein (GFAP), which possibly functions as a tumor suppressor[1], and is a useful diagnostic marker in a tissue biopsy. [2]
Pathophysiology
Gross Pathology
Astrocytoma may be associated with glioma and primary brain neoplasm. Astrocytoma may be a risk factor for Glioblastoma multiforme.
Microscopic Pathology
- Histologic diagnosis with tissue biopsy will normally reveal an infiltrative character suggestive of the slow growing nature of the tumor. The tumor may be cavitating, pseudocyst-forming, or noncavitating. Appearance is usually white-gray, firm, and almost indistinguishable from normal white matter.
Histopathological Video
Video
{{#ev:youtube|O0b4zyDQcyI}}
References
- ↑ M Toda; et al. (1994). "Cell growth suppression of astrocytoma C6 cells by glial fibrillary acidic protein cDNA transfection". Journal of Neurochemistry. 63 (5): 1975–1978. PMID 7931355.
- ↑ JHN Deck; et al. (1978). "The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors". Acta Neuropathologica. Springer Berlin / Heidelberg. 42 (3): 183–190. doi:10.1007/BF00690355.