Bladder cancer pathophysiology

Revision as of 18:43, 1 October 2015 by Shanshan Cen (talk | contribs)
Jump to navigation Jump to search

Bladder cancer Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Bladder cancer from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Staging

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Electrocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Biopsy

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Bladder cancer pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Bladder cancer pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Bladder cancer pathophysiology

CDC on Bladder cancer pathophysiology

Bladder cancer pathophysiology in the news

Blogs on Bladder cancer pathophysiology

Directions to Hospitals Treating Bladder cancer

Risk calculators and risk factors for Bladder cancer pathophysiology

Steven C. Campbell, M.D., Ph.D.

Overview

Genes involved in the pathogenesis of bladder cancer include HRAS, Rb1, PTEN/MMAC1, NAT2, and GSTM1.

Pathogenesis

  • Under normal conditions, the bladder, the lower part of the kidneys (the renal pelvises), the ureters, and the proximal urethra are lined with a specialized mucous membrane referred to as transitional epithelium (also called urothelium).
  • Most cancers that form in the bladder, the renal pelvises, the ureters, and the proximal urethra are transitional cell carcinomas (also called urothelial carcinomas) that derive from transitional epithelium.
  • Urothelial carcinomas may be non-invasive (only in the lining of the bladder) or invasive (growing into other layers of the bladder wall).

Genetics

Genetic mutations:

  • HRAS mutation
  • Rb1 mutation
  • PTEN/MMAC1 mutation
  • NAT2 slow acetylator phenotype
  • GSTM1 null phenotype

Gross Pathology

  • Non-invasive urothelial carcinoma
  • On gross pathology, flat lesions or papillary lesions are characteristic findings of non-invasive urothelial carcinoma.
  • Invasive urothelial carcinoma

Microscopic Pathology

References

Template:WH Template:WS