Albinism pathophysiology
Albinism Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Albinism pathophysiology On the Web |
American Roentgen Ray Society Images of Albinism pathophysiology |
Risk calculators and risk factors for Albinism pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Pathophysiology
Albinism is a genetic disorder; it is not an infectious disease and cannot be transmitted through contact, blood transfusions, etc. The principal gene which results in albinism prevents the body from making the usual amounts of the pigment melanin. Most forms of albinism are the result of the biological inheritance of genetically recessive alleles (genes) passed from both parents of an individual, though some rare forms are inherited from only one parent. There are other genetic mutations which are proven to be associated with albinism. All alterations, however, lead to changes in melanin production in the body.[1][2]
Albinism used to be categorized as tyrosinase-positive or -negative. In cases of tyrosinase-positive albinism, the enzyme tyrosinase is present. The melanocytes (pigment cells) are unable to produce melanin for any one of a variety of reasons that do not directly involve the tyrosinase enzyme. In tyrosinase negative cases, either the tyrosinase enzyme is not produced or a nonfunctional version is produced. This classification has been rendered obsolete by recent research.[3]
The chance of offspring with albinism resulting from the pairing of an organism with albinism and one without albinism is low, as discussed in more detail below. However, because organisms can be carriers of genes for albinism without exhibiting any traits, albinistic offspring can be produced by two non-albinistic parents. Albinism usually occurs with equal frequency in both genders.[1] An exception to this is ocular albinism, because it is passed on to offspring through X-linked inheritance. Thus, males more frequently have ocular albinism.[3]
Because organisms with albinism have skin that lacks (sufficiently or entirely) the dark pigment melanin, which helps protect the skin from ultraviolet radiation coming from the sun, they can sunburn easily from overexposure. (See human skin color for more information). Lack of melanin in the eye also results in problems with vision, related and unrelated to photosensitivity, which are discussed further below.
Most humans and many animals with albinism appear white or very pale; the multiple types of melanin pigment are responsible for brown, black, gray, and some yellow colorations. In some animals, especially albinistic birds and reptiles, ruddy and yellow hues or other colors may be present on the entire body or in patches (as is common among pigeons), due to the presence of other pigments unaffected by albinism such as porphyrins, pteridines and psittacins, as well as carotenoid pigements derived from the diet. Some animals are white or pale due to chromatophore (pigment cell) defects, do not lack melanin production, and have normal eyes; they are referred to as leucistic. The direct opposite of albinism, an unusually high level of melanin pigmentation (and sometimes absence of other types of pigment in species that have more than one), is known as melanism, and results in an appearance darker than non-melanistic specimens from the same genepool.[4] Albinism-like conditions may affect other pigments or pigment-production mechanisms in some animals (e.g. "whiteface", a lack of psittacins that can affect some parrot species.).[5] Another is common in reptiles and amphibians: axanthism, in which xanthophore metabolism, instead of synthesis of melanin, is affected, resuling in reduction or absence of red and yellow pteridine pigments.[6] Of all these conditions, only albinism and melanism affect humans.
The eyes of an animal with albinism occasionally appear red due to the underlying retinal blood vessels showing through where there is not enough pigment to cover them. In humans this is rarely the case, as a human eye is quite large and thus produces enough pigment to lend opacity to the eye, often colouring the iris pale blue. However, there are cases in which the eyes of an albinistic person appear red or purple, depending on the amount of pigment present. The albinistic are generally (but see related disorders below) as healthy as the rest of their species, with growth and development occurring as
References
- ↑ 1.0 1.1 "Albinism", by Dr. Raymond E. Boissy, Dr. James J. Nordlund, et al., at eMedicine, 22 August 2005; retrieved 31 March 2007
- ↑ Online Mendelian Inheritance in Man Database, at Johns Hopkins University (see also Mendelian Inheritance in Man for more information about this source).
- ↑ 3.0 3.1 "Facts about Albinism", by Richard King et al.
- ↑ "Feather Colors: What We See" by Dr. Julie Feinstein of the American Museum of Natural History (NY), in Birder's World Magazine online archive; sourced December 2006, actual authoring/publication date unspecified.
- ↑ "The Parblue Puzzle: Part 4 — Common Parblue Varieties: The Cockatiel [Nymphicus hollandicus]" by Clive Hesford, The Genetics of Colour in the Budgerigar and Other Parrots, January 1998
- ↑ "Amphibian Biology & Physiology: Caudata" at Amphibian Information Resource: An Educational Web Project About Amphibian Species; sourced December 2006, actual authoring/publication date unspecified.