Sandbox:Corynebacterium diphtheriae
Diphtheria Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Sandbox:Corynebacterium diphtheriae On the Web |
American Roentgen Ray Society Images of Sandbox:Corynebacterium diphtheriae |
Risk calculators and risk factors for Sandbox:Corynebacterium diphtheriae |
This page is about microbiologic aspects of the organism(s). For clinical aspects of the disease, see Diphtheria.
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];
Corynebacterium diphtheriae | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gram stained Corynebacterium diphtheriae culture
| ||||||||||||
Scientific classification | ||||||||||||
| ||||||||||||
Binomial name | ||||||||||||
Corynebacterium diphtheriae Kruse, 1886 |
Overview
Corynebacterium diphtheriae is a pathogenic bacterium that causes diphtheria. It is also known as the Klebs-Löffler bacillus, because it was discovered in 1884 by Germany|German bacteriologists Edwin Klebs (1834 – 1912) and Friedrich Löffler (1852 – 1915).
Morphology and Structure
- C. diphtheriae is a facultatively anaerobic, Gram positive organism, characterized by non-encapsulated, non-sporulated, immobile, straight or curved rods.[1]
- The genome of C. diphtheriae contains 2,488,635 nucleotides, 2,389 genes, and 69 structural RNA genes.[2]
- As a gram-positive bacteria, C. diphtheriae contains a cell membrane and a lipid-rich murein layer outside.
- Cell wall sugars of C. diphtheriae include arabinose, galactose, and mannose.
- Gram-stain will result in a blue-purple coloration due to containing polymetaphosphate granules.
- Many strains of C. diphtheriae produce diphtheria toxin, a protein exotoxin, with a molecular weight of 62 kilodaltons which ADP-ribosylates host EF-2, which results in the inhibition of protein synthesis and is responsible for the signs of diphtheria.[3]
- The inactivation of this toxin with an antitoxic serum (antitoxin) is the basis of the antidiphtheric vaccination.
- Not all strains are toxigenic; the ability to produce the exotoxin is conferred on the bacterium when it is infected by a bacteriophage through a mechanism termed lysogenic activation.
- A non-toxigenic strain can become toxigenic by the infection of such a bacteriophage.
- The inactivation of this toxin with an antitoxic serum (antitoxin) is the basis of the antidiphtheric vaccination.
- C. diptheriae is only pathogenic in humans.[4]
Classification
C. diphtheriae can be classified into the following three subspecies:[1][5]
- C. diphtheriae mitis
- C. diphtheriae intermedius
- C. diphtheriae gravis
- C. diphtheriea belfanti[6]
Diagnosis
- Diagnosis ofC. diphtheriae includes a Gram stain procedure.
- Results will indicate gram-positive, pleomorphic bacteria that will dye violet-blue, club-shaped resembling Chinese characters.[6]
- Additional tests include Albert's stain and Loeffler's stain.
- C. diphtheriae should be cultured on an erichment medium, namely to allow it to overgrow any other organisms present in the specimen.[7]
- A selective plate tellurite agar which allows all Corynebacteria (including C. diphtheriae) to reduce tellurite to metallic tellurium and produce brown colonies
- C. diphtheriae is the only corynebacterium that will produce a black halo around the colonies.
- A selective plate tellurite agar which allows all Corynebacteria (including C. diphtheriae) to reduce tellurite to metallic tellurium and produce brown colonies
Pathophysiology
- C.diphtheriae causes diphtheria disease in non-immunized human hosts via secreted toxins.[1]
- Toxigenic strains of the bacterium will secrete toxins in nasopharyngeal or skin lesions; it is common for hosts to carry C. diphtheriae in the nasopharyngeal region without displaying symptoms.
- A low concentration of iron is required in the medium for toxin production; at high iron concentrations, iron molecules bind to a repressor which shuts down toxin production[8]
- C.diphtheriae is transmitted through respiratory droplets, secretions, or direct contact.
- Lysogenic conversion of nontoxigenic-toxigenic phenotypes of the bacterium can occur following transmission, allowing non-human/affected hosts to transmit diphtheria to humans.
Sensitivity
C. diphtheriae is sensitive to the following antibiotics:[9]
- Benzylpenicillin
- Ampicillin
- Oxytetracycline
- Erythromycin
- Cephaloradine
- Lincomycin
- Clindamycin
- Neomycin
Genetics
References
- ↑ 1.0 1.1 1.2 Baron S, Murphy JR. PMID 21413281. Missing or empty
|title=
(help) - ↑ Cerdeno-Tarraga, A. M. (2003). "The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129". Nucleic Acids Research. 31 (22): 6516–6523. doi:10.1093/nar/gkg874. ISSN 1362-4962.
- ↑ Nester, Eugene W.; et al. (2004). Microbiology: A Human Perspective (Fourth ed.). Boston: McGraw-Hill. ISBN 0-07-247382-7.
- ↑ von Behring E, Kitasato S (1991). "[The mechanism of diphtheria immunity and tetanus immunity in animals. 1890]". Mol. Immunol. (in German). 28 (12): 1317, 1319–20. PMID 1749380.
- ↑ Chang DN, Laughren GS, Chalvardjian NE (1978). "Three variants of Corynebacterium diphtheriae subsp. mitis (Belfanti) isolated from a throat specimen". J. Clin. Microbiol. 8 (6): 767–8. PMC 275340. PMID 106070.
- ↑ 6.0 6.1 "Pinkbook | Diphtheria | Epidemiology of Vaccine Preventable Diseases | CDC".
- ↑ Nester, Eugene W.; et al. (2004). Microbiology: A Human Perspective (Fourth ed.). Boston: McGraw-Hill. ISBN 0-07-247382-7.
- ↑ Nester, Eugene W.; et al. (2004). Microbiology: A Human Perspective (Fourth ed.). Boston: McGraw-Hill. ISBN 0-07-247382-7.
- ↑ Zamiri I, McEntegart MG (1972). "The sensitivity of diphtheria bacilli to eight antibiotics". J. Clin. Pathol. 25 (8): 716–7. PMC 477485. PMID 4627747.
External links
- CoryneRegNet - Database of Corynebacterial Transcription Factors and Regulatory Networks