Dermatophytosis pathophysiology

Revision as of 13:58, 22 June 2017 by Skazmi (talk | contribs)
Jump to navigation Jump to search

Dermatophytosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Dermatophytosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiographic Findings

X-Ray Findings

CT scan Findings

MRI Findings

Ultrasound Findings

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Dermatophytosis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Dermatophytosis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA onDermatophytosis pathophysiology

CDC on Dermatophytosis pathophysiology

Dermatophytosis pathophysiology in the news

Blogs on Dermatophytosis pathophysiology

Directions to Hospitals Treating Dermatophytosis here

Risk calculators and risk factors for Dermatophytosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-in-Chief: Syed Hassan A. Kazmi BSc, MD [2]

Overview

Pathophysiology

Pathogenesis

  • Dermatophytes survive on the outer layer of skin called stratum corneum.
  • Stratum corneum has been known to be not only source of nutrition for the dermatophytes, but also the growing fungal mycelia.[1]
  • After the inoculation in the host skin, suitable conditions favor the infection to progress through the following stages:

Adherence

  • Dermatophyte-secreted proteases not only are mediate adherence to the host skin but also help in germination of arthroconidia and hyphal growth leading to growth of the fungi in multiple directions.[2][3]
  • Fungal arthroconidia attach to keratinocytes via long and sparse microprojections (fibrils).[3]

Penetration

  • Penetration by dermatophytes is achieved by secreting multiple serine-subtilisins and metallo-endoproteases (fungalysins) formerly called keratinases that are found only in the dermatophytes.[4]
  • Fungal mannans in the dermatophyte cell wall have immunosupressive ability and inhibit the action of T cells. T. rubrum cell wall mannans (TRM) may lead to inhibition of lymphoproliferative response of mononuclear leukocytes. This leads to fungal growth and proliferation on the host skin.

Host response

  • Fungal metabolic products diffuse through the stratum basale and stratum spinosum to cause erythema, vesicle or even pustule formation and pruritus.
  • Acutely, the host responds to fungal invasion by


References

  1. Samdani AJ (2005). "Dermatophyte growth and degradation of human stratum corneum in vitro (pathogenesis of dermatophytosis)". J Ayub Med Coll Abbottabad. 17 (4): 19–21. PMID 16599028.
  2. Aljabre SH, Richardson MD, Scott EM, Rashid A, Shankland GS (1993). "Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis". Clin. Exp. Dermatol. 18 (3): 231–5. PMID 8348716.
  3. 3.0 3.1 Vermout S, Tabart J, Baldo A, Mathy A, Losson B, Mignon B (2008). "Pathogenesis of dermatophytosis". Mycopathologia. 166 (5–6): 267–75. doi:10.1007/s11046-008-9104-5. PMID 18478361.
  4. Dahl MV (1994). "Dermatophytosis and the immune response". J. Am. Acad. Dermatol. 31 (3 Pt 2): S34–41. PMID 8077506.

Template:WikiDoc Sources