Heparin-induced thrombocytopenia pathophysiology

Jump to navigation Jump to search

Heparin-induced thrombocytopenia

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Heparin-induced thrombocytopenia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Heparin-induced thrombocytopenia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Heparin-induced thrombocytopenia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Heparin-induced thrombocytopenia pathophysiology

CDC on Heparin-induced thrombocytopenia pathophysiology

Heparin-induced thrombocytopenia pathophysiology in the news

Blogs on Heparin-induced thrombocytopenia pathophysiology

Directions to Hospitals Treating Heparin-induced thrombocytopenia

Risk calculators and risk factors for Heparin-induced thrombocytopenia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Priyamvada Singh, M.B.B.S. [2]

Overview

Heparin-induced thrombocytopenia is diagnosed when the platelet count falls by > 50% typically after 5-10 days of heparin therapy. It is caused by antibodies to complexes between heparin and platelet factor 4 (PF4). These antibody complexes stimulates the procoagulant pathways due to activation of platelet and endothelium.

Pathophysiology

An understanding of the pathophysiology of HIT requires an understanding of normal physiology.

Normal physiology:

  • Under normal circumstances, platelet factor 4 (PF4) is found in the alpha granules of platelets. It is a positively charged protein that functions to antagonize the effects of heparin-like proteins like heparin sulfate and chondroitin sulfate on the cell surface.[1] PF4 is located intracellularly, but upon platelet activation, PF4 is released, and it contributes to the release of antithrombin from the cell surface, promoting clotting (platelet plugging).
  • Under normal circumstances, there are no endogenous antibodies to PF4.
  • Under normal circumstances, heparin administration results in activation of antithrombin III, which in turn inhibits factors II, IX, X, XI, XII, and XIII. The allows for adequate anticoagulation for patients.

Pathophysiology:

  • This begins with heparin exposure, which can trigger the release of PF4 from endothelial surfaces. Heparin can then form ultra-large complexes with PF4 via electrostatic forces.
  • These complexes of heparin and PF4 can induce production of antibodies, and this large complex serves as an unfamiliar antigen to the body.[1] IgG antibodies are typically produced.
  • Immune complexes eventually form, consisting of heparin, PF4 and IgG.[1] The crystallized fragment domain, or (Fc) domain of IgG can bind to Fc receptors, such as FC gamma R II, on the surface of a variety of immune cells, including platelets, neutrophils, and monocytes.
  • Binding of IgG from the large complexes triggers activation of the target cells and eventual production of thrombin, which is highly thrombogenic and contributes to clot formation.[1]
  • Widespread systemic thrombosis can lead to significant morbidity and mortality.

Reference

  1. 1.0 1.1 1.2 1.3 Lee GM, Arepally GM (2013). "Diagnosis and management of heparin-induced thrombocytopenia". Hematol Oncol Clin North Am. 27 (3): 541–63. doi:10.1016/j.hoc.2013.02.001. PMC 3668315. PMID 23714311.

Template:WS Template:WH