Congenital adrenal hyperplasia
This page contains general information about Congenital adrenal hyperplasia. For more information on specific types, please visit the pages on 21-hydroxylase deficiency, 17a-Hydroxylase deficiency, 11β-hydroxylase deficiency, 3-beta-hydroxysteroid dehydrogenase, Cytochrome P450-oxidoreductase (POR) deficiency (ORD), congenital lipoid adrenal hyperplasia, cholesterol side-chain cleavage enzyme deficiency .
Congenital adrenal hyperplasia main page |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mehrian Jafarizade, M.D [2]
Synonyms and keywords: Congenital adrenal hyperplasia, CAH, Adrenal hyperplasia
Overview
Congenital adrenal hyperplasia (CAH) refers to any of several autosomal recessive conditions resulting from biochemical paths of the steroidogenesis of cortisol from cholesterol by the adrenal glands. Most of these conditions involve greater or lesser production of sex steroids and can alter development of primary or secondary sex characteristics in affected infants, children, and adults. Only a small minority of people with CAH can be said to have an intersex condition, but this attracted American public attention in the late 1990s and many accounts of varying accuracy have appeared in the popular media. Approximately 95% of cases of CAH are due to 21-hydroxylase deficiency. Prenatal diagnosis can be made in both of these disorders by chorionic villous sampling, but this can only be done at 8-10 weeks. In order to prevent the deleterious effect of excess androgens on genital (and brain!) development, therapy must be started earlier. This is most often considered if there is an affected sibling. Treatment is dexamethasone, which is not degraded by the placenta, but is associated with significant maternal weight gain, hypertension, and edema.
Classification
Congenital adrenal hyperplasia is classified into seven types based on the genetic causes that lead to hyperplasia and hormonal imbalance. There are three zones of hormonal synthesis in adrenal cortex that are shown below, and impairment of each pathway may lead to a specific subtype of congenital adrenal hyperplasia.
Disease | History and symptoms | Laboratory findings | Defective gene | ||||
---|---|---|---|---|---|---|---|
Blood pressure | Genitalia | Increased | Decreased | K levels | |||
21-hydroxylase deficiency | Classic type |
|
|
|
|
| |
Non-classic type |
|
|
response to ACTH |
|
|
| |
17-α hydroxylase deficiency |
|
|
|
| |||
11-β hydroxylase deficiency |
|
|
|
|
| ||
3 beta-hydroxysteroid dehydrogenase deficiency |
|
Both male and female: ambiguous genitalia |
|
| |||
Cytochrome P450-oxidoreductase (POR) deficiency (ORD) | |||||||
Congenital lipoid adrenal hyperplasia | |||||||
Cholesterol side-chain cleavage enzyme deficiency |
Differential Diagnosis
Congenital adrenal hyperplasia must be differentiated from diseases that cause ambiguous genitalia:[1][2]
Disease name | Laboratory tests | Important clinical findings | |
---|---|---|---|
Increased | Decreased | ||
Classic type of 21-hydroxylase deficiency |
|
| |
11-β hydroxylase deficiency |
|
| |
17-α hydroxylase deficiency |
| ||
3β-Hydroxysteroid Dehydrogenase |
| ||
Gestational hyperandrogenism |
|
|
Congenital adrenal hyperplasia must be differentiated from diseases that cause virilization and hirsutism in female:[3][2][4]
Disease name | Steroid status | Other laboratory | Important clinical findings |
---|---|---|---|
Non-classic type of 21-hydroxylase deficiency | Increased:
response to ACTH |
|
|
11-β hydroxylase deficiency | Increased:
Decreased: |
|
|
3β-Hydroxysteroid Dehydrogenase | Increased:
Decreased: |
|
|
Polycystic ovary syndrome |
|
|
|
Adrenal tumors |
|
|
|
Ovarian virilizing tumor |
|
|
|
Cushing's syndrome |
|
||
Hyperprolactinemia |
|
|
Some types of congenital adrenal hyperplasia must be differentiated from diseases with primary amenorrhea and female external genitalia.[5][6][7][8][9][10][11][12]
Disease name | Cause | Differentiating | ||||||
---|---|---|---|---|---|---|---|---|
Findings | Uterus | Breast development | Testosterone | LH | FSH | Karyotyping | ||
Pregnancy | HCG positive | |||||||
3-beta-hydroxysteroid dehydrogenase type 2 deficiency |
|
Yes in female | Yes in female | Low | Normal | Normal | XY and XX | |
17-alpha-hydroxylase deficiency |
|
No | No | Low | Normal | Normal | XY | |
Gonadal dysgenesis |
|
|
Yes | Yes | Low | High | High | XY |
Testicular regression syndrome |
|
|
No | No | Low | High | High | XY |
LH receptor defects |
|
No | No | Low | High | High | XY | |
5-alpha-reductase type 2 deficiency |
|
No | No | Normal male range | High to normal | High to normal | XY | |
Androgen insensitivity syndrome |
|
|
No | Yes | Normal male range | Normal | Normal | XY |
Mullerian agenesis |
|
No | Yes | Normal female range | Normal | Normal | XX | |
Primary ovarian insufficiency |
|
|
Yes | Yes | Normal female range | High | High | XX |
Hypogonadotropic hypogonadism |
|
|
Yes | No | Normal female range | Low | Normal | XX |
Turner syndrome |
|
|
Yes | Yes | Normal female range | High | High | 45 XO |
References
- ↑ Hughes IA, Nihoul-Fékété C, Thomas B, Cohen-Kettenis PT (2007). "Consequences of the ESPE/LWPES guidelines for diagnosis and treatment of disorders of sex development". Best Pract. Res. Clin. Endocrinol. Metab. 21 (3): 351–65. doi:10.1016/j.beem.2007.06.003. PMID 17875484.
- ↑ 2.0 2.1 White PC, Speiser PW (2000). "Congenital adrenal hyperplasia due to 21-hydroxylase deficiency". Endocr. Rev. 21 (3): 245–91. doi:10.1210/edrv.21.3.0398. PMID 10857554.
- ↑ Hohl A, Ronsoni MF, Oliveira M (2014). "Hirsutism: diagnosis and treatment". Arq Bras Endocrinol Metabol. 58 (2): 97–107. PMID 24830586. Vancouver style error: initials (help)
- ↑ Melmed, Shlomo (2016). Williams textbook of endocrinology. Philadelphia, PA: Elsevier. ISBN 978-0323297387.=
- ↑ Maimoun L, Philibert P, Cammas B, Audran F, Bouchard P, Fenichel P, Cartigny M, Pienkowski C, Polak M, Skordis N, Mazen I, Ocal G, Berberoglu M, Reynaud R, Baumann C, Cabrol S, Simon D, Kayemba-Kay's K, De Kerdanet M, Kurtz F, Leheup B, Heinrichs C, Tenoutasse S, Van Vliet G, Grüters A, Eunice M, Ammini AC, Hafez M, Hochberg Z, Einaudi S, Al Mawlawi H, Nuñez CJ, Servant N, Lumbroso S, Paris F, Sultan C (2011). "Phenotypical, biological, and molecular heterogeneity of 5α-reductase deficiency: an extensive international experience of 55 patients". J. Clin. Endocrinol. Metab. 96 (2): 296–307. doi:10.1210/jc.2010-1024. PMID 21147889.
- ↑ Moreira AC, Leal AM, Castro M (1990). "Characterization of adrenocorticotropin secretion in a patient with 17 alpha-hydroxylase deficiency". J. Clin. Endocrinol. Metab. 71 (1): 86–91. doi:10.1210/jcem-71-1-86. PMID 2164530.
- ↑ Heremans GF, Moolenaar AJ, van Gelderen HH (1976). "Female phenotype in a male child due to 17-alpha-hydroxylase deficiency". Arch. Dis. Child. 51 (9): 721–3. PMC 1546244. PMID 999330.
- ↑ Biglieri EG (1979). "Mechanisms establishing the mineralocorticoid hormone patterns in the 17 alpha-hydroxylase deficiency syndrome". J. Steroid Biochem. 11 (1B): 653–7. PMID 226795.
- ↑ Saenger P (1996). "Turner's syndrome". N. Engl. J. Med. 335 (23): 1749–54. doi:10.1056/NEJM199612053352307. PMID 8929268.
- ↑ Bastian C, Muller JB, Lortat-Jacob S, Nihoul-Fékété C, Bignon-Topalovic J, McElreavey K, Bashamboo A, Brauner R (2015). "Genetic mutations and somatic anomalies in association with 46,XY gonadal dysgenesis". Fertil. Steril. 103 (5): 1297–304. doi:10.1016/j.fertnstert.2015.01.043. PMID 25813279.
- ↑ Imperato-McGinley J, Guerrero L, Gautier T, Peterson RE (1974). "Steroid 5alpha-reductase deficiency in man: an inherited form of male pseudohermaphroditism". Science. 186 (4170): 1213–5. PMID 4432067.
- ↑ Schnitzer JJ, Donahoe PK (2001). "Surgical treatment of congenital adrenal hyperplasia". Endocrinol. Metab. Clin. North Am. 30 (1): 137–54. PMID 11344932.