11β-hydroxylase deficiency differential diagnosis
11β-hydroxylase deficiency Microchapters |
Differentiating 11β-hydroxylase deficiency from other Diseases |
Diagnosis |
Treatment |
Case Studies |
11β-hydroxylase deficiency differential diagnosis On the Web |
American Roentgen Ray Society Images of 11β-hydroxylase deficiency differential diagnosis |
11β-hydroxylase deficiency differential diagnosis in the news |
Directions to Hospitals Treating Congenital adrenal hyperplasia due to 11β-hydroxylase deficiency |
Risk calculators and risk factors for 11β-hydroxylase deficiency differential diagnosis |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mehrian Jafarizade, M.D [2]
Overview
11β-hydroxylase deficiency must be differentiated from diseases that cause ambiguous genitalia such as 21-hydroxylase deficiency, 17 alpha-hydroxylase deficiency, 3 beta-hydroxysteroid dehydrogenase deficiency and Gestational hyperandrogenism.
Differentiating 11β-hydroxylase deficiency from other diseases
11-hydroxylase deficiency must be differentiated from diseases that cause ambiguous genitalia:[1][2]
Disease name | Steroid status | Important clinical findings | |
---|---|---|---|
Increased | Decreased | ||
Classic type of 21-hydroxylase deficiency |
|
| |
11-β hydroxylase deficiency |
|
| |
17-α hydroxylase deficiency |
| ||
3 beta-hydroxysteroid dehydrogenase deficiency |
| ||
Gestational hyperandrogenism |
|
|
11β-hydroxylase deficiency must be differentiated from diseases that cause virilization and hirsutism in female:[3][2][4]
Disease name | Steroid status | Other laboratory | Important clinical findings |
---|---|---|---|
Non-classic type of 21-hydroxylase deficiency | Increased:
|
|
|
11-β hydroxylase deficiency | Increased:
Decreased: |
|
|
3 beta-hydroxysteroid dehydrogenase deficiency | Increased:
Decreased: |
|
|
Polycystic ovary syndrome |
|
|
|
Adrenal tumors |
|
|
|
Ovarian virilizing tumor |
|
|
|
Cushing's syndrome |
|
||
Hyperprolactinemia |
|
|
11β-hydroxylase deficiency can cause low reninemic hypertension and should be differentiate from other causes of pseudohyperaldosteronism (low renin):
Pseudohyperaldosteronism causes | Disease | Etiology | Clinical features | Labratory | Treatment | |||
---|---|---|---|---|---|---|---|---|
Elevated mineralocorticoid | Renin | Aldosterone | Other | |||||
Endogenous causes | 17 alpha-hydroxylase deficiency | Mutations in the CYP17A1 gene |
|
Deoxycorticosterone (DOC) | ↓ | ↓ | Cortisol ↓ | Corticosteroids |
11β-hydroxylase deficiency | Mutations in the CYP11B1 gene |
|
Cortisol ↓ | |||||
Apparent mineralocorticoid excess syndrome (AME) | Genetic or acquired defect of 11-HSD gene
|
|
Cortisol has mineralocorticoid effects | ↓ | ↓ | Urinary free cortisone ↓↓ | Dexamethasone and/or mineralocorticoid blockers | |
Liddle’s syndrome (Pseudohyperaldosteronism type 1) | Mutation of the epithelial sodium channels (ENaC) gene in the distal renal tubules | No extra mineralocorticoid presents, and mutations in Na channels mimic aldosterone mechanism | ↓ | ↓ | Cortisol ↓ | Amiloride or triamterene | ||
Cushing’s syndrome |
|
Rapid weight gain, particularly of the trunk and face with limbs sparing (central obesity)
|
Cortisol has mineralocorticoid effects | ↓ |
|
Urinary free cortisol markedly ↑↑ |
| |
Insensitivity to glucocorticoids (Chrousos syndrome) | Mutations in glucocorticoid receptor (GR) gene |
|
Deoxycorticosterone (DOC) | ↓ | ↓ | Cortisol | Dexamethasone | |
Cortisol-secreting adrenocortical carcinoma | Multifactorial |
Rapid weight gain, particularly of the trunk and face with limbs sparing (central obesity)
|
Cortisol has mineralocorticoid effects | ↓ |
|
Urinary free cortisol markedly ↑↑ | Surgery | |
Geller’s syndrome | Mutation of mineralocorticoid (MR) receptor that alters its specificity and allows progesterone to bind MR | Severe hypertension particularly during pregnancy | Progesterone has mineralocorticoid effects | ↓ | ↓ | - | mineralocorticoid blockers | |
Gordon’s syndrome (Pseudohypoaldosteronism type 2) | Mutations of at least four genes have been identified, including WNK1 and WNK4 |
|
No excess mineralocorticoid; an increased activity of the thiazide-sensitive Na–Cl co-transporter in the distal tubule | ↓ | Normal | Hyperkalemia | Thiazide diuretics and/or dietary sodium restriction | |
Exogenous causes | Corticosteroids with mineralocorticoid activity | Fludrocortisone or fluoroprednisolone can mimic the action of aldosterone | Medications such as fludrocortisone | ↓ | ↓ | - | Change the treatment | |
Licorice ingestion | Glycyrrhetinic acid that binds mineralocorticoid receptor and blocks 11-HSD2 at the level of classical target tissues of aldosterone | - | ↓ | ↓ | Urinary free cortisol Moderate ↑ | Discontinue licorice | ||
Grapefruit | High assumption of naringenin, a component of grapefruit, can also block 11-HSD | - | ↓ | ↓ | - | Discontinue grapefruit | ||
Estrogens | Estrogens can retain sodium and water by different mechanisms, causing:
|
- | ↓ | ↓ | - | Discontinue estrogens |
References
- ↑ Hughes IA, Nihoul-Fékété C, Thomas B, Cohen-Kettenis PT (2007). "Consequences of the ESPE/LWPES guidelines for diagnosis and treatment of disorders of sex development". Best Pract. Res. Clin. Endocrinol. Metab. 21 (3): 351–65. doi:10.1016/j.beem.2007.06.003. PMID 17875484.
- ↑ 2.0 2.1 White PC, Speiser PW (2000). "Congenital adrenal hyperplasia due to 21-hydroxylase deficiency". Endocr. Rev. 21 (3): 245–91. doi:10.1210/edrv.21.3.0398. PMID 10857554.
- ↑ Hohl A, Ronsoni MF, Oliveira M (2014). "Hirsutism: diagnosis and treatment". Arq Bras Endocrinol Metabol. 58 (2): 97–107. PMID 24830586. Vancouver style error: initials (help)
- ↑ Melmed, Shlomo (2016). Williams textbook of endocrinology. Philadelphia, PA: Elsevier. ISBN 978-0323297387.=