Pancreatic cancer pathophysiology

Revision as of 15:25, 10 November 2017 by Sudarshana Datta (talk | contribs)
Jump to navigation Jump to search
https://https://www.youtube.com/watch?v=XFxMOiJRZQg%7C350}}


Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Parminder Dhingra, M.D. [2]

Pancreatic cancer Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pancreatic Cancer from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Staging

Diagnostic study of choice

History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Pancreatic cancer pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Pancreatic cancer pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pancreatic cancer pathophysiology

CDC on Pancreatic cancer pathophysiology

Pancreatic cancer pathophysiology in the news

Blogs on Pancreatic cancer pathophysiology

Directions to Hospitals Treating Pancreatic cancer

Risk calculators and risk factors for Pancreatic cancer pathophysiology


Overview

The exact pathogenesis of [disease name] is not fully understood.

OR

It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].

OR

[Pathogen name] is usually transmitted via the [transmission route] route to the human host.

OR

Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.

OR


[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].

OR

The progression to [disease name] usually involves the [molecular pathway].

OR

The pathophysiology of [disease/malignancy] depends on the histological subtype.

Pathophysiology

Pathogenesis

  • The pathogenesis of pancreatic cancer involves the activation or inactivation of multiple gene subsets and their interaction.
  • The molecular pathogenesis of pancreatic cancer involves the following:
    • Inactivation of tumor suppressor genes
    • Activation of oncogenes
    • Deregulation of molecules in various signalling pathways
      • EGFR
      • Akt
      • NF-kB
      • Hedgehog pathways

Genetics

  • [Disease name] is transmitted in [mode of genetic transmission] pattern.
  • Genes involved in the pathogenesis of [disease name] include [gene1], [gene2], and [gene3].
  • The development of [disease name] is the result of multiple genetic mutations.

Associated Conditions

Gross Pathology

  • On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Microscopic Pathology

  • On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

References

Template:WH Template:WS


Overview

The pathophysiology of pancreatic adenocarcinoma includes considerable desmoplasia or formation of a dense fibrous stroma or structural tissue consisting of a range of cell types (including myofibroblasts, macrophages, lymphocytes and mast cells) and deposited material (such as type I collagen and hyaluronic acid).

Pathophysiology

Pathology

The most common form of pancreatic cancer (adenocarcinoma) is typically characterized by moderately to poorly differentiated glandular structures on microscopic examination. There is typically considerable desmoplasia or formation of a dense fibrous stroma or structural tissue consisting of a range of cell types (including myofibroblasts, macrophages, lymphocytes and mast cells) and deposited material (such as type I collagen and hyaluronic acid).

References