Glutathione S-transferase Mu 2 is an enzyme that in humans is encoded by the GSTM2gene.[1][2][3]
Cytosolic and membrane-bound forms of glutathione S-transferase are encoded by two distinct supergene families. At present, eight distinct classes of the soluble cytoplasmic mammalian glutathione S-transferases have been identified: alpha, kappa, mu, omega, pi, sigma, theta and zeta. This gene encodes a glutathione S-transferase that belongs to the mu class. The mu class of enzymes functions in the detoxification of electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress, by conjugation with glutathione. The genes encoding the mu class of enzymes are organized in a gene cluster on chromosome 1p13.3 and are known to be highly polymorphic. These genetic variations can change an individual's susceptibility to carcinogens and toxins as well as affect the toxicity and efficacy of certain drugs.[3]
↑Campbell E, Takahashi Y, Abramovitz M, Peretz M, Listowsky I (Jul 1990). "A distinct human testis and brain mu-class glutathione S-transferase. Molecular cloning and characterization of a form present even in individuals lacking hepatic type mu isoenzymes". J Biol Chem. 265 (16): 9188–93. PMID2345169.
Dawson SJ, White LA (1992). "Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin". J. Infect. 24 (3): 317–20. doi:10.1016/S0163-4453(05)80037-4. PMID1602151.
Raghunathan S, Chandross RJ, Kretsinger RH, et al. (1994). "Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity". J. Mol. Biol. 238 (5): 815–32. doi:10.1006/jmbi.1994.1336. PMID8182750.
Anttila S, Hirvonen A, Vainio H, et al. (1994). "Immunohistochemical localization of glutathione S-transferases in human lung". Cancer Res. 53 (23): 5643–8. PMID8242618.
Xu S, Wang Y, Roe B, Pearson WR (1998). "Characterization of the human class Mu glutathione S-transferase gene cluster and the GSTM1 deletion". J. Biol. Chem. 273 (6): 3517–27. doi:10.1074/jbc.273.6.3517. PMID9452477.
Patskovska LN, Fedorov AA, Patskovsky YV, et al. (1998). "Expression, crystallization and preliminary X-ray analysis of ligand-free human glutathione S-transferase M2-2". Acta Crystallogr. D. 54 (Pt 3): 458–60. doi:10.1107/S0907444997011190. PMID9761928.
Coles BF, Anderson KE, Doerge DR, et al. (2000). "Quantitative analysis of interindividual variation of glutathione S-transferase expression in human pancreas and the ambiguity of correlating genotype with phenotype". Cancer Res. 60 (3): 573–9. PMID10676639.
Ivarsson Y, Mackey AJ, Edalat M, et al. (2003). "Identification of residues in glutathione transferase capable of driving functional diversification in evolution. A novel approach to protein redesign". J. Biol. Chem. 278 (10): 8733–8. doi:10.1074/jbc.M211776200. PMID12486119.
De Maria F, Pedersen JZ, Caccuri AM, et al. (2004). "The specific interaction of dinitrosyl-diglutathionyl-iron complex, a natural NO carrier, with the glutathione transferase superfamily: suggestion for an evolutionary pressure in the direction of the storage of nitric oxide". J. Biol. Chem. 278 (43): 42283–93. doi:10.1074/jbc.M305568200. PMID12871945.
Weng MW, Hsiao YM, Chiou HL, et al. (2005). "Alleviation of benzo[a]pyrene-diolepoxide-DNA damage in human lung carcinoma by glutathione S-transferase M2". DNA Repair (Amst.). 4 (4): 493–502. doi:10.1016/j.dnarep.2004.12.006. PMID15725629.