Filamin-binding LIM protein 1 is a protein that in humans is encoded by the FBLIM1gene.[1][2][3]
This gene encodes a protein with an N-terminal filamin-binding domain, a central proline-rich domain, and, multiple C-terminal LIM domains. This protein localizes at cell junctions and may link cell adhesion structures to the actin cytoskeleton. This protein may be involved in the assembly and stabilization of actin-filaments and likely plays a role in modulating cell adhesion, cell morphology and cell motility. This protein also localizes to the nucleus and may affect cardiomyocyte differentiation after binding with the CSX/NKX2-5 transcription factor. Alternative splicing results in multiple transcript variants encoding different isoforms.[3]
↑ 1.01.1Tu Y, Wu S, Shi X, Chen K, Wu C (April 2003). "Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation". Cell. 113 (1): 37–47. doi:10.1016/S0092-8674(03)00163-6. PMID12679033.
↑Takafuta T, Saeki M, Fujimoto TT, Fujimura K, Shapiro SS (March 2003). "A new member of the LIM protein family binds to filamin B and localizes at stress fibers". J Biol Chem. 278 (14): 12175–81. doi:10.1074/jbc.M209339200. PMID12496242.
↑Tu, Yizeng; Wu Shan; Shi Xiaohua; Chen Ka; Wu Chuanyue (April 2003). "Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation". Cell. United States. 113 (1): 37–47. doi:10.1016/S0092-8674(03)00163-6. ISSN0092-8674. PMID12679033.
↑Takafuta, Toshiro; Saeki Mari; Fujimoto Tetsuro-Takahiro; Fujimura Kingo; Shapiro Sandor S (April 2003). "A new member of the LIM protein family binds to filamin B and localizes at stress fibers". J. Biol. Chem. United States. 278 (14): 12175–81. doi:10.1074/jbc.M209339200. ISSN0021-9258. PMID12496242.
Further reading
Wu C (2005). "Migfilin and its binding partners: from cell biology to human diseases". J. Cell Sci. 118 (Pt 4): 659–64. doi:10.1242/jcs.01639. PMID15701922.
Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID14702039.
Brandenberger R, Wei H, Zhang S, et al. (2005). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation". Nat. Biotechnol. 22 (6): 707–16. doi:10.1038/nbt971. PMID15146197.
Gkretsi V, Zhang Y, Tu Y, et al. (2005). "Physical and functional association of migfilin with cell-cell adhesions". J. Cell Sci. 118 (Pt 4): 697–710. doi:10.1242/jcs.01638. PMID15671069.
Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID16189514.
Oh JH, Yang JO, Hahn Y, et al. (2006). "Transcriptome analysis of human gastric cancer". Mamm. Genome. 16 (12): 942–54. doi:10.1007/s00335-005-0075-2. PMID16341674.
Zhang Y, Tu Y, Gkretsi V, Wu C (2006). "Migfilin interacts with vasodilator-stimulated phosphoprotein (VASP) and regulates VASP localization to cell-matrix adhesions and migration". J. Biol. Chem. 281 (18): 12397–407. doi:10.1074/jbc.M512107200. PMID16531412.
Gregory SG, Barlow KF, McLay KE, et al. (2006). "The DNA sequence and biological annotation of human chromosome 1". Nature. 441 (7091): 315–21. doi:10.1038/nature04727. PMID16710414.