Trifunctional enzyme subunit alpha, mitochondrial also known as hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit is a protein that in humans is encoded by the HADHA gene.[1]
HADHA is a 82.9 kDa protein composed of 763 amino acids.[2][3]
The mitochondrial membrane-bound heterocomplex is composed of four alpha and four beta subunits, with the alpha subunit catalyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities. The genes of the alpha and beta subunits of the mitochondrial trifunctional protein are located adjacent to each other in the human genome in a head-to-head orientation.[1]
Function
This gene encodes the alpha subunit of the mitochondrial trifunctional protein, which catalyzes the last three steps of mitochondrial beta-oxidation of long chain fatty acids.[1] The enzyme converts medium- and long-chain 2-enoyl-CoA compounds into the following 3-ketoacyl-CoA when NAD is solely present, and acetyl-CoA when NAD and CoASH are present.[4] The alpha subunit catalyzes this reaction, and is attached to HADHB, which catalyzes the last step of the reaction.[5]
The most common form of the mutation is G1528C, in which the guanine at the 1528th position is changed to a cytosine. The gene mutation creates a protein deficiency that is associated with impaired oxidation of long-chain fatty acids that can lead to sudden infant death.[6] Long-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency is associated with some pregnancy-specific disorders, including preeclampsia, HELLP syndrome (hemolysis, elevated liver enzymes, low platelets), hyperemesis gravidarum, acute fatty liver of pregnancy, and maternal floor infarct of the placenta.[7][8] Additionally, it has been correlated with Acute fatty liver of pregnancy (AFLP) disease.[9]
From a clinical perspective, HADHA might also be a useful marker to predict resistance to certain types of chemotherapy in patients with lung cancer.[10]
↑Carpenter K, Pollitt RJ, Middleton B (Mar 1992). "Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria". Biochemical and Biophysical Research Communications. 183 (2): 443–8. doi:10.1016/0006-291x(92)90501-b. PMID1550553.
↑Voet DJ, Voet JG, Pratt CW (2010). "Chapter 18, Mitochondrial ATP synthesis". Principles of Biochemistry (4th ed.). Wiley. p. 669. ISBN978-0-470-23396-2.
↑Rakheja D, Bennett MJ, Rogers BB (Jul 2002). "Long-chain L-3-hydroxyacyl-coenzyme a dehydrogenase deficiency: a molecular and biochemical review". Laboratory Investigation. 82 (7): 815–24. doi:10.1097/01.lab.0000021175.50201.46. PMID12118083.
↑Griffin AC, Strauss AW, Bennett MJ, Ernst LM (September–October 2012). "Mutations in long-chain 3-hydroxyacyl coenzyme a dehydrogenase are associated with placental maternal floor infarction/massive perivillous fibrin deposition". Pediatric and Developmental Pathology. 15 (5): 368–74. doi:10.2350/12-05-1198-oa.1. PMID22746996.
↑Ibdah JA, Yang Z, Bennett MJ (September–October 2000). "Liver disease in pregnancy and fetal fatty acid oxidation defects". Molecular Genetics and Metabolism. 71 (1–2): 182–9. doi:10.1006/mgme.2000.3065. PMID11001809.
↑Kageyama T, Nagashio R, Ryuge S, Matsumoto T, Iyoda A, Satoh Y, Masuda N, Jiang SX, Saegusa M, Sato Y (2011). "HADHA is a potential predictor of response to platinum-based chemotherapy for lung cancer". Asian Pacific Journal of Cancer Prevention. 12 (12): 3457–63. PMID22471497.
Further reading
Rakheja D, Bennett MJ, Rogers BB (Jul 2002). "Long-chain L-3-hydroxyacyl-coenzyme a dehydrogenase deficiency: a molecular and biochemical review". Laboratory Investigation. 82 (7): 815–24. doi:10.1097/01.lab.0000021175.50201.46. PMID12118083.
Isaacs JD, Sims HF, Powell CK, Bennett MJ, Hale DE, Treem WR, Strauss AW (Sep 1996). "Maternal acute fatty liver of pregnancy associated with fetal trifunctional protein deficiency: molecular characterization of a novel maternal mutant allele". Pediatric Research. 40 (3): 393–8. doi:10.1203/00006450-199609000-00005. PMID8865274.
Milewska M, McRedmond J, Byrne PC (Nov 2009). "Identification of novel spartin-interactors shows spartin is a multifunctional protein". Journal of Neurochemistry. 111 (4): 1022–30. doi:10.1111/j.1471-4159.2009.06382.x. PMID19765186.
Weekes J, Morrison K, Mullen A, Wait R, Barton P, Dunn MJ (Feb 2003). "Hyperubiquitination of proteins in dilated cardiomyopathy". Proteomics. 3 (2): 208–16. doi:10.1002/pmic.200390029. PMID12601813.
Bogenhagen DF, Rousseau D, Burke S (Feb 2008). "The layered structure of human mitochondrial DNA nucleoids". Journal of Biological Chemistry. 283 (6): 3665–75. doi:10.1074/jbc.M708444200. PMID18063578.
Zhang QX, Baldwin GS (Oct 1994). "Structures of the human cDNA and gene encoding the 78 kDa gastrin-binding protein and of a related pseudogene". Biochimica et Biophysica Acta. 1219 (2): 567–75. doi:10.1016/0167-4781(94)90091-4. PMID7918661.
IJlst L, Oostheim W, Ruiter JP, Wanders RJ (Jul 1997). "Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of two new mutations". Journal of Inherited Metabolic Disease. 20 (3): 420–2. doi:10.1023/A:1005310903004. PMID9266371.
Yagi M, Lee T, Awano H, Tsuji M, Tajima G, Kobayashi H, Hasegawa Y, Yamaguchi S, Takeshima Y, Matsuo M (Dec 2011). "A patient with mitochondrial trifunctional protein deficiency due to the mutations in the HADHB gene showed recurrent myalgia since early childhood and was diagnosed in adolescence". Molecular Genetics and Metabolism. 104 (4): 556–9. doi:10.1016/j.ymgme.2011.09.025. PMID22000755.