This gene encodes a predicted 75-kDa polypeptide with high sequence and structure homology to yeast Gle1p, which is nuclear protein with a leucine-rich nuclear export sequence essential for poly(A)+RNA export. Inhibition of human GLE1L by microinjection of antibodies against GLE1L in HeLa cells resulted in inhibition of poly(A)+RNA export. Immunoflourescence studies show that GLE1L is localized at the nuclear pore complexes. This localization suggests that GLE1L may act at a terminal step in the export of mature RNA messages to the cytoplasm. Two alternatively spliced transcript variants encoding different isoforms have been found for this gene.[3]
Clinical significance
A genome-wide screening and linkage analysis assigned the disease locus of lethal congenital contracture syndrome, one of 40 Finnish heritage diseases, to a defined region of 9q34, where the GLE1 gene is located.[4] Mutations in GLEI have been identified in families with foetal motoneuron disease.[5]
↑Mäkelä-Bengs P, Järvinen N, Vuopala K, Suomalainen A, Palotie A, Peltonen L (1997). "The assignment the lethal congenital contracture syndrome (LCCS) locus to chromosome 9q33-34". Am. J. Hum. Genet. 61 (suppl): A30.
↑Rayala HJ, Kendirgi F, Barry DM, Majerus PW, Wente SR (Feb 2004). "The mRNA export factor human Gle1 interacts with the nuclear pore complex protein Nup155". Mol. Cell. Proteomics. 3 (2): 145–55. doi:10.1074/mcp.M300106-MCP200. PMID14645504.
Further reading
Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID8125298.
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID9373149.
Rayala HJ, Kendirgi F, Barry DM, Majerus PW, Wente SR (2004). "The mRNA export factor human Gle1 interacts with the nuclear pore complex protein Nup155". Mol. Cell. Proteomics. 3 (2): 145–55. doi:10.1074/mcp.M300106-MCP200. PMID14645504.