Atelectasis pathophysiology

Jump to navigation Jump to search

Atelectasis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Atelectasis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Future or Investigational Therapies

Case Studies

Case #1

Atelectasis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Atelectasis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Atelectasis pathophysiology

CDC on Atelectasis pathophysiology

Atelectasis pathophysiology in the news

Blogs on Atelectasis pathophysiology

Directions to Hospitals Treating Atelectasis

Risk calculators and risk factors for Atelectasis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sudarshana Datta, MD [2]

Overview

The pathophysiology of obstructive and non-obstructive atelectasis is determined by several factors. Obstructive atelectasis, the most common type of atelectasis and occurs due to obstruction from the trachea to the alveoli at any level. Foreign bodies, tumors, and mucus plugs are causes of obstructive atelectasis. Non obstructive atelectasis occurs due to severe lung scarring caused by necrotizing pneumonias or granulomatous diseases leading to cicatrisation atelectasis. Lung infiltration by a tumor (bronchoalveolar carcinoma) may cause replacement atelectasis, thoracic space occupying lesions can cause compression atelectasis, diminished levels of surfactant can lead to adhesive atelectasis presenting as ARDS. Passive atelectasis occurs due to absence of contact between the parietal and visceral pleurae due to fluid (pleural effusion), air (pneumothorax), blood (hemothorax) etc. Patients undergoing upper abdominal and thoracic procedures may develop postoperative atelectasis which may arise as a complication of surgery or anaesthesia leading to decreased surfactant activity and dysfunction of the diaphragm.

Pathophysiology

Pathogenesis

  • It is understood that atelectasis is the result of obstructive and non-obstructive etiologies.
  • The pathophysiology of obstructive and non-obstructive atelectasis is determined by several factors.
  • Obstructive atelectasis, the most common type of atelectasis and occurs due to obstruction from the trachea to the alveoli at any level. Bronchial obstruction leads to resorption of alveolar gas by the blood circulating in the alveolar capillary membrane. Alveolar gas reabsorption due to obstruction leads to diminished lung volume and subsequent atelectasis.
  • Perfusion of unventilated lung tissue leads to hypoxemia due to shunt formation.
  • Following bronchial obstruction, complete collapse of the affected lung is prevented by secretions that fill up the spaces of the alveoli. The adjacent lung distends to prevent collapse of the part of the lung undergoing atelectasis. The mediastinum shifts towards the affected side. Diaphragmatic elevation of the diaphragm leads to flattening of the chest wall.
  • The extent of atelectasis depends upon the level of obstruction. Lobar atelectasis occurs due to lobar bronchus obstruction, while segmental atelectasis arises from segmental bronchus obstruction.
  • Foreign bodies, tumors, and mucus plugs are causes of obstructive atelectasis. The rate and pattern of development of atelectasis depends on collateral ventilation and gas composition of inspired air.
  • Non obstructive atelectasis occurs due to severe lung scarring caused by necrotizing pneumonias or granulomatous diseases leading to cicatrisation atelectasis. Lung infiltration by a tumor (bronchoalveolar carcinoma) may cause replacement atelectasis, thoracic space occupying lesions can cause compression atelectasis, diminished levels of surfactant can lead to adhesive atelectasis presenting as ARDS. Passive atelectasis occurs due to absence of contact between the parietal and visceral pleurae due to fluid (pleural effusion), air (pneumothorax), blood (hemothorax) etc.
  • Atelectasis of the upper lobe commonly occurs due to pneumothorax, whereas atelectasis of the middle and lower lobes occurs due to pleural effusion.
  • Rounded atelectasis, which presents at a mean age of 60 years, arises due to formation of fibrous bands which adhere the lung to the pleura. There is a high association of rounded atelectasis in asbestosis due to the formation of fibrous pleural plaques.
  • Middle lobe syndrome (Fixed or recurrent atelectasis of the lingula/right middle lobe) occurs due to Sjogren’s syndrome. Intraluminal or extraluminal obstruction (compression of the bronchi by adjacent structures) results in middle lobe syndrome.

Associated Conditions

Gross Pathology

  • On gross pathology, pleural folds with deep invaginations are characteristic findings of atelectasis.[1]

Microscopic Pathology

  • On microscopic histopathological analysis, fibrosis and pleural invaginations are characteristic findings of atelectasis.[1]
  • If there is an existing pathology leading to atelectasis, characteristic features of the underlying disease may also be seen on microscopic pathology.

References

  1. 1.0 1.1 "Pathology Outlines - Round or rounded atelectasis".

Template:WH Template:WS