IgG deficiency

Jump to navigation Jump to search

WikiDoc Resources for IgG deficiency

Articles

Most recent articles on IgG deficiency

Most cited articles on IgG deficiency

Review articles on IgG deficiency

Articles on IgG deficiency in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on IgG deficiency

Images of IgG deficiency

Photos of IgG deficiency

Podcasts & MP3s on IgG deficiency

Videos on IgG deficiency

Evidence Based Medicine

Cochrane Collaboration on IgG deficiency

Bandolier on IgG deficiency

TRIP on IgG deficiency

Clinical Trials

Ongoing Trials on IgG deficiency at Clinical Trials.gov

Trial results on IgG deficiency

Clinical Trials on IgG deficiency at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on IgG deficiency

NICE Guidance on IgG deficiency

NHS PRODIGY Guidance

FDA on IgG deficiency

CDC on IgG deficiency

Books

Books on IgG deficiency

News

IgG deficiency in the news

Be alerted to news on IgG deficiency

News trends on IgG deficiency

Commentary

Blogs on IgG deficiency

Definitions

Definitions of IgG deficiency

Patient Resources / Community

Patient resources on IgG deficiency

Discussion groups on IgG deficiency

Patient Handouts on IgG deficiency

Directions to Hospitals Treating IgG deficiency

Risk calculators and risk factors for IgG deficiency

Healthcare Provider Resources

Symptoms of IgG deficiency

Causes & Risk Factors for IgG deficiency

Diagnostic studies for IgG deficiency

Treatment of IgG deficiency

Continuing Medical Education (CME)

CME Programs on IgG deficiency

International

IgG deficiency en Espanol

IgG deficiency en Francais

Business

IgG deficiency in the Marketplace

Patents on IgG deficiency

Experimental / Informatics

List of terms related to IgG deficiency

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Mohsen Basiri M.D.

Overview

IgG deficiency (Selective deficiency of immunoglobulin G) is a form of dysgammaglobulinemia where the proportional levels of the IgG isotype are reduced relative to other immunoglobulin isotypes. IgG deficiency is often found in children as transient hypogammaglobulinemia of infancy (THI), which may occur with or without additional decreases in IgA or IgM.

IgG has four subclasses: IgG1, IgG2, IgG3, and IgG4. It is possible to have either a global IgG deficiency, or a deficiency of one or more specific subclasses of IgG.[1][2] The main clinically relevant form of IgG deficiency is IgG2. IgG3 deficiency is not usually encountered without other concomitant immunoglobulin deficiencies, and IgG4 deficiency is very common but usually asymptomatic.[3]

IgG1 is present in the bloodstream at a percentage of about 60-70%, IgG2-20-30%, IgG3 about 5-8 %, and IgG4 1-3 %. IgG subclass deficiencies affect only IgG subclasses (usually IgG2 or IgG3), with normal total IgG and IgM immunoglobulins and other components of the immune system being at normal levels. These deficiencies can affect only one subclass or involve an association of two subclasses, such as IgG2 and IgG4. IgG deficiencies are usually not diagnosed until the age of 10. Some of the IgG levels in the blood are undetectable and have a low percentage such as IgG4, which makes it hard to dertermine if a deficiency is actually present. IgG subclass deficiencies are sometimes correlated with bad responses to pneumoccal polyscaccharides, especially IgG2 and or IgG4 deficiency. Some of these deficiencies are also involved with pancreatitis and have been linked to IgG4 levels.

Historical Perspective

In 1952, Bruton described classic X-linked agammaglobulinemia due to B-cell deficiency in an 8-year-old boy. The child presented with frequent pyogenic infections, repeated episodes of sepsis with the same serotypes of pneumococcus, and multiple episodes of mumps, yet he had no antibodies against these pathogens. Serum protein electrophoresis had just become available, and it revealed that the g fraction was missing from the child’s blood. Subsequently, patients were described who had detectable lymphoid tissue and B-cells but had decreased IgG levels and/or lacked specific antibodies. These conditions are now recognized as fitting the categories of hyper-IgM syndromes and common variable immunodeficiency (CVID). A new subset of the latter was recently characterized by reduced C1 esterase inhibitor levels. [1]

In the early 1960s, following the discovery of the IgG subclasses, certain associations were also recognized between individual subclass deficiencies, decreased ability to respond to certain types of antigens (ie, bacterial polysaccharides), and recurrent infection. IgG deficiencies may occur as isolated deficiencies (eg, selective IgG deficiency) or in association with deficiencies of other immunoglobulin types. Moreover, even if the total IgG concentration is normal, deficiencies of one or more individual IgG subclasses, significant decreases in specific IgG antibodies, or both may be observed.

Classification

  • [Disease name] may be classified according to [classification method] into [number] subtypes/groups:
  • [group1]
  • [group2]
  • [group3]
  • Other variants of [disease name] include [disease subtype 1], [disease subtype 2], and [disease subtype 3].

Pathophysiology

  • Immunodeficiency diseases are described according to involvement one or more of the 4 major components of the immune system. These components are 1) B cells ; 2) T cells, 3) phagocytes; and 4) complement
  • B-cell or humoral immunity, is mediated by the immunoglobulins There are five types or classes of immunoglobulin: IgG, IgA, IgM, IgD and IgE. The IgG class of antibodies is composed of four different subtypes of IgG molecules called the IgG subclasses. These are designated IgG1, IgG2, IgG3 and IgG4. The term "IgG subclass deficiency" refers to a significant decrease in the serum concentrations of one or more subclasses of IgG in a patient whose total IgG concentration is normal [4]
  • PATHOGENESIS — The primary mechanisms underlying IgG subclass deficiency are unclear. Gene deletions, transcription errors, cytokine dysregulation, immunosuppressive therapy, and allotypic variations are some mechanisms that have been described:
  • Gene deletions – Heterozygous gene deletions causes reduction in the serum concentration of the corresponding subclass. Deletions have been described for genes C-gamma-1, C-gamma-2, and C-gamma-4 [13].
  • . Homozygous deletions of large portions of the immunoglobulin heavy chain gene, resulting in the absence of multiple immunoglobulin classes, are also described. Such patients may have no detectable IgG1, IgG2, IgG4, IgA1, or IgE [15,16]. Such deletions are thought to arise from unequal crossover, resulting from extensive homology among the immunoglobulin heavy chain genes on chromosome 14. ●Transcription errors – Alteration of germline transcription and restriction fragment length polymorphisms 5' of the S-gamma-4 loci within the gamma-chain constant region gene complex have been specifically documented in patients with IgG4 deficiency patients compared with controls [17]. ●Effect of allotype – Some IgG subclass deficiencies may be influenced by allotype. A lack of the G2m(n) allotype and homozygosity for the G3m(g) and G3m(b) allotypes has been described among Caucasian patients[18,19].

Causes

  • There are no established causes for IgG deficiency, and mechanisms underlying IgG subclass deficiency are unclear. Genetic, transcription errors, allotypic variations,and immunosuppressive therapy are some mechanisms that have been proposed.

Differentiating [disease name] from other Diseases

  • IgG must be differentiated from other diseases that cause recurrent infections , especially recurrent sinopulmonary infections include otitis media, rhinosinusitis, and pneumonia. More serious infections that can occur include osteomyelitis, meningitis, septicemia, diarrhea, and various skin infections [2].
  • Malignancy
  • Viral infections
  • Certain medications

Epidemiology and Demographics

  • Among patient populations with more frequent or severe infections, IgG subclass deficiency is a common finding: ●In two large series from France, IgG subclass deficiency was detected in 21 percent of 483 patients with abnormally frequent, prolonged, or severe infections who had been recruited from clinical immunology, pediatrics, and infectious diseases departments [5,9]. IgG3 was the most frequently deficient subclass, which has also been observed in other studies [2-4,12]. ●In a report of 1175 adults with symptoms suggestive of an antibody defect, decreased IgG1, IgG2, IgG3, and IgG4 levels were noted in 28, 17, 13, and 9 percent, respectively (table 2) [11].

Age

  • Both children and adults are affected. Children younger than 24 months cannot make much IgG2; hence, measuring the IgG2 subclass concentration before this age is not meaningful. The most common subclass deficiency in early childhood is IgG2 deficiency; in adults, IgG1 and IgG3 deficiencies predominate. IgG1 accounts for a higher proportion of the total IgG in children as compared to adults. Although children rapidly attain adult levels of IgG1 and IgG3, the development of IgG2 and IgG4 is slower. In some children, maturation of the full range of IgG subclasses may be delayed until the teenage years. Note the figure below.

Gender

  • [The sex distribution of IgG subclass deficiency differs in children and adults. In children, IgG subclass deficiencies are more common in boys by a ratio of 3:1 [2,3]. In contrast, there is a predominance of females after age 16. This shift in sex distribution may be due to hormonal influences upon the development and maturation of the immune system.

Race

  • There is no racial predilection for IgG deficiency.

Risk Factors

  • Common risk factors in the development of IgG deficiency
  • Protein-losing conditions such as enteropathy and nephropathy can result in apparent selective deficiency of IgG
  • Intense exercise or excessive physical stress
  • Smoking
  • Aging
  • Certain medications systemic glucocorticoids, sulfasalazine, and the antiepileptics zonisamide, phenytoin, and carbamazepine, have been associated with acquired cases of IgG subclass deficiency

Natural History, Complications and Prognosis

  • The majority of patients with IgG deficiency remain asymptomatic for In addition, there are patients with complete deficiencies of multiple subclasses (combinations of IgG1, IgG2, IgG4, IgE, or IgA) who remain healthy and free of infections [29-32].
  • Early clinical features include recurrent sinopulmonary infections. More serious infections that can occur include osteomyelitis, meningitis, septicemia, diarrhea, and various skin infections
  • If left untreated, [#%] of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
  • Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
  • Prognosis is generally influenced by the age of the patient as well as the degree of deficiency.
  • Evidence suggests that the majority of children younger than six to eight years of age with clinically significant IgG subclass deficiency and diminished specific antibody responses will normalize both antibody responsiveness and IgG subclass level(s) [10,41]. This appears to be particularly true for young children with IgG2 and IgA deficiency and impaired responses to polysaccharide antigens. In contrast, if the condition persists beyond the age of six years, it is likely to be permanent.
  • Adults with clinically significant IgG subclass deficiency and diminished specific antibody responses will rarely achieve normalization of a deficient IgG subclass level

Diagnosis

Diagnostic Criteria

  • The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met:
  • [criterion 1]
  • [criterion 2]
  • [criterion 3]
  • [criterion 4]

Symptoms

  • [Disease name] is usually asymptomatic.
  • Symptoms of [disease name] may include the following:
  • [symptom 1]
  • [symptom 2]
  • [symptom 3]
  • [symptom 4]
  • [symptom 5]
  • [symptom 6]

Physical Examination

  • Patients with [disease name] usually appear [general appearance].
  • Physical examination may be remarkable for:
  • [finding 1]
  • [finding 2]
  • [finding 3]
  • [finding 4]
  • [finding 5]
  • [finding 6]

Laboratory Findings

  • There are no specific laboratory findings associated with [disease name].
  • A [positive/negative] [test name] is diagnostic of [disease name].
  • An [elevated/reduced] concentration of [serum/blood/urinary/CSF/other] [lab test] is diagnostic of [disease name].
  • Other laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].

Electrocardiogram

X-ray

CT

MRI

Echocardiograph and Ultrasound

Imaging Findings

  • There are no [imaging study] findings associated with [disease name].
  • [Imaging study 1] is the imaging modality of choice for [disease name].
  • On [imaging study 1], [disease name] is characterized by [finding 1], [finding 2], and [finding 3].
  • [Imaging study 2] may demonstrate [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

  • [Disease name] may also be diagnosed using [diagnostic study name].
  • Findings on [diagnostic study name] include [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

  • There is no treatment for [disease name]; the mainstay of therapy is supportive care.
  • The mainstay of therapy for [disease name] is [medical therapy 1] and [medical therapy 2].
  • [Medical therapy 1] acts by [mechanism of action 1].
  • Response to [medical therapy 1] can be monitored with [test/physical finding/imaging] every [frequency/duration].

Surgery

  • Surgery is the mainstay of therapy for [disease name].
  • [Surgical procedure] in conjunction with [chemotherapy/radiation] is the most common approach to the treatment of [disease name].
  • [Surgical procedure] can only be performed for patients with [disease stage] [disease name].

Prevention

  • There are no primary preventive measures available for [disease name].
  • Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
  • Once diagnosed and successfully treated, patients with [disease name] are followed-up every [duration]. Follow-up testing includes [test 1], [test 2], and [test 3].

References

  1. Barton JC, Bertoli LF, Acton RT (June 2003). "HLA-A and -B alleles and haplotypes in 240 index patients with common variable immunodeficiency and selective IgG subclass deficiency in central Alabama". BMC Med. Genet. 4: 3. doi:10.1186/1471-2350-4-3. PMC 166147. PMID 12803653.
  2. Dhooge IJ, van Kempen MJ, Sanders LA, Rijkers GT (June 2002). "Deficient IgA and IgG2 anti-pneumococcal antibody levels and response to vaccination in otitis prone children". Int. J. Pediatr. Otorhinolaryngol. 64 (2): 133–41. doi:10.1016/S0165-5876(02)00068-X. PMID 12049826.
  3. Driessen, G; van der Burg, M (June 2011). "Educational paper: primary antibody deficiencies". European journal of pediatrics. 170 (6): 693–702. doi:10.1007/s00431-011-1474-x. PMID 21544519.
  4. Herrod HG. Clinical significance of IgG subclasses. Curr Opin Pediatr 1993; 5:696


Template:WS Template:WH