Pure red cell aplasia
Template:DiseaseDisorder infobox
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Mahda Alihashemi M.D. [2]
Synonyms and keywords: Acquired pure megakaryocytic aplasia, pure red cell aplasia, erythroblastopenia
Overview
Historical Perspective
Pure red cell aplasia was first discovered by Paul Kaznelson in 1922.[1]
The association between [important risk factor/cause] and [disease name] was made in/during [year/event].
In [year], [scientist] was the first to discover the association between [risk factor] and the development of [disease name].
In [year], [gene] mutations were first implicated in the pathogenesis of [disease name].
There have been several outbreaks of [disease name], including -----.
In [year], [diagnostic test/therapy] was developed by [scientist] to treat/diagnose [disease name].
Classification
cquired pure red cell aplasia (PRCA) is a rare, generally chronic condition of profound anemia characterized by a severe reduction in the number of reticulocytes in the peripheral blood and the virtual absence of erythroid precursors in the bone marrow. All other cell lineages are present and appear morphologically normal.
●A similar but usually self-limited condition seen during the first years of life, transient erythroblastopenia of childhood, is discussed separately. (See "Anemia in children due to decreased red blood cell production", section on 'Transient erythroblastopenia of childhood (TEC)'.)
●A congenital form of red cell aplasia is known as Diamond-Blackfan anemia (DBA). DBA is associated with a number of congenital abnormalities, risk of malignancy, and marked unresponsiveness to prednisone. (See "Anemia in children due to decreased red blood cell production", section on 'Diamond-Blackfan anemia'.)
Acquired PRCA will be discussed here. Acquired PRCA due to the presence of anti-erythropoietin antibodies secondary to treatment with recombinant human erythropoietin is discussed separately
There is no established system for the classification of pure red cell aplasia (PRCA). However it may be classified into congenial and acquired red cell aplasia.
OR
[Disease name] may be classified according to [classification method] into [number] subtypes/groups: [group1], [group2], [group3], and [group4].
OR
[Disease name] may be classified into [large number > 6] subtypes based on [classification method 1], [classification method 2], and [classification method 3]. [Disease name] may be classified into several subtypes based on [classification method 1], [classification method 2], and [classification method 3].
OR
Based on the duration of symptoms, [disease name] may be classified as either acute or chronic.
OR
If the staging system involves specific and characteristic findings and features: According to the [staging system + reference], there are [number] stages of [malignancy name] based on the [finding1], [finding2], and [finding3]. Each stage is assigned a [letter/number1] and a [letter/number2] that designate the [feature1] and [feature2].
OR
The staging of [malignancy name] is based on the [staging system].
OR
There is no established system for the staging of [malignancy name].
Pathophysiology
cquired pure red cell aplasia (PRCA) is a rare, generally chronic condition of profound anemia characterized by a severe reduction in the number of reticulocytes in the peripheral blood and the virtual absence of erythroid precursors in the bone marrow. All other cell lineages are present and appear morphologically normal.
Erythroid-specific suppression — The multipotent hematopoietic stem cell is not the target of attack in PRCA. Lymphopoiesis, granulopoiesis, and megakaryocytopoiesis are all normal. (See "Overview of hematopoietic stem cells".)
When bone marrow from patients with PRCA is grown in semisolid media, the committed erythroid progenitor cells Burst Forming Unit erythroid (BFUe) and Colony Forming Unit erythroid (CFUe) are present even though the marrow is devoid of erythroid precursors [1]. (See "Regulation of erythropoiesis", section on 'Erythroid progenitor cells'.)
The first morphologically identifiable erythroid precursor in normal marrow is the proerythroblast, which is absent in the bone marrow in PRCA. Thus, the site of suppression is usually at the stage between CFUe and the proerythroblast, although arrest between BFUe and CFUe has been demonstrated in a few cases [1]. Very rarely, BFUe are also decreased [1]. (See "Regulation of erythropoiesis", section on 'Precursors and mature cells'.)
Mediators of suppression — In approximately 60 percent of patients with PRCA, their serum and its IgG fraction inhibits the growth of patient and normal erythroid progenitors in vitro [1,20]. The target antigen is usually not known; in a few cases, however, the IgG fraction contains an inhibitor of erythropoietin. (See "Pure red cell aplasia due to anti-erythropoietin antibodies", section on 'Anti-EPO antibodies'.)
In other cases of autoimmune PRCA, suppression of erythropoiesis seems to be mediated by T lymphocytes [1,2]. A subset of T lymphocytes has been implicated and clonal changes may be seen [1]. One study evaluated 14 of 47 patients with PRCA for T cell receptor gene rearrangements: clonal rearrangement was noted in nine [2]. Clonal abnormalities were also identified by karyotypic studies in 4 of 28 patients. (See "Treatment of large granular lymphocyte leukemia".)
The exact pathogenesis of [disease name] is not fully understood.
OR
It is thought that acquired pure red cell aplasia is the result of profound anemia due to severe reduction in number of RBC in peripheral blood and absence of erythroid precursors in the bone marrow.The numbers of white blood cells and platelets are normal.[2].In autoimmune disorders, IgG fraction in serum inhibit the growth of normal erythroid progenitors. [3]
Autoimmune disorders
In some of these patients, their serum and its IgG fraction inhibit the growth of patient and normal erythroid progenitors.
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
OR
The progression to [disease name] usually involves the [molecular pathway].
OR
The pathophysiology of [disease/malignancy] depends on the histological subtype.
Causes
- Autoimmune disease
- Autoimmune hemolytic anemia
- Systemic lupus erythematosus
- Rheumatoid arthritis
- Thymoma[4]
- Viral infections
- Lymphoproliferative disorders
- T-cell large granular lymphocyte leukemia, especially in china [7]
- Chronic lymphocytic leukemia
- Hodgkin lymphoma
- Non-Hodgkin lymphoma
- Myeloid malignancies such as Chronic myeloid leukemia
- Myelodysplastic syndrome[8]
- Idiopathic[9]
- Drugs [10][11][12]
- Phenytoin
- Chloramphenicol
- Azathioprine
- Isoniazid
- Valproic acid
- Erythropoietin
- Trimethoprim-sulfamethoxazole
- Zidovudine
- Chlorpropamide
- ABO- incompatible hematopoietic cell transplantation
- Anti- erythropoietin antibodies due to treatment with recombinant human erythropoietin[13]
- Plasma cell disorders[14]
- Pregnancy
Disease name] may be caused by [cause1], [cause2], or [cause3].
OR
Common causes of [disease] include [cause1], [cause2], and [cause3].
OR
The most common cause of [disease name] is [cause 1]. Less common causes of [disease name] include [cause 2], [cause 3], and [cause 4].
OR
The cause of [disease name] has not been identified. To review risk factors for the development of [disease name], click here.
Differentiating ((Page name)) from Other Diseases
A similar but usually self-limited condition seen during the first years of life, transient erythroblastopenia of childhood, is discussed separately.
A congenital form of red cell aplasia is known as Diamond-Blackfan anemia (DBA). DBA is associated with a number of congenital abnormalities, risk of malignancy, and marked unresponsiveness to prednisone.
[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].
OR
[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].
Epidemiology and Demographics
The incidence/prevalence of [disease name] is approximately [number range] per 100,000 individuals worldwide.
OR
In [year], the incidence/prevalence of [disease name] was estimated to be [number range] cases per 100,000 individuals worldwide.
OR
In [year], the incidence of [disease name] is approximately [number range] per 100,000 individuals with a case-fatality rate of [number range]%.
Patients of all age groups may develop [disease name].
OR
The incidence of [disease name] increases with age; the median age at diagnosis is [#] years.
OR
[Disease name] commonly affects individuals younger than/older than [number of years] years of age.
OR
[Chronic disease name] is usually first diagnosed among [age group].
OR
[Acute disease name] commonly affects [age group].
There is no racial predilection to [disease name].
OR
[Disease name] usually affects individuals of the [race 1] race. [Race 2] individuals are less likely to develop [disease name].
[Disease name] affects men and women equally.
OR
[Gender 1] are more commonly affected by [disease name] than [gender 2]. The [gender 1] to [gender 2] ratio is approximately [number > 1] to 1.
The majority of [disease name] cases are reported in [geographical region].
OR
[Disease name] is a common/rare disease that tends to affect [patient population 1] and [patient population 2].
Risk Factors
There are no established risk factors for [disease name].
OR
The most potent risk factor in the development of [disease name] is [risk factor 1]. Other risk factors include [risk factor 2], [risk factor 3], and [risk factor 4].
OR
Common risk factors in the development of [disease name] include [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].
OR
Common risk factors in the development of [disease name] may be occupational, environmental, genetic, and viral.
Screening
There is insufficient evidence to recommend routine screening for [disease/malignancy].
OR
According to the [guideline name], screening for [disease name] is not recommended.
OR
According to the [guideline name], screening for [disease name] by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].
Natural History, Complications, and Prognosis
If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
OR
Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
OR
Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.
Diagnosis
Diagnostic Study of Choice
The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].
OR
The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].
OR
The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].
OR
There are no established criteria for the diagnosis of [disease name].
History and Symptoms
The majority of patients with [disease name] are asymptomatic.
OR
The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].
Physical Examination
The net result of the immune attack in PRCA is a marked reduction or absence of all recognizable red cell precursors in the bone marrow and absence of reticulocytes in the peripheral blood. Therefore the anemia is due solely to the complete or nearly complete cessation of red cell production.
Since red cells normally survive for approximately 120 days in the circulation, anemia develops at a rate of 0.8 percent per day (ie, 1/120 of the circulating red cells die each day but are not replaced). This pace is slow enough to allow the body to compensate for a reduced oxygen-carrying capacity. Accordingly, the patient with PRCA may not present until a significant degree of anemia is present, often to a hematocrit <10 percent, a point at which these compensatory changes are no longer sufficient. (See Congenital. The term "hereditary pure red cell aplasia" has been used to refer to Diamond-Blackfan anemia.
Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].
OR
Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
The presence of [finding(s)] on physical examination is diagnostic of [disease name].
OR
The presence of [finding(s)] on physical examination is highly suggestive of [disease name].
Laboratory Findings
An elevated/reduced concentration of serum/blood/urinary/CSF/other [lab test] is diagnostic of [disease name].
OR
Laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].
OR
[Test] is usually normal among patients with [disease name].
OR
Some patients with [disease name] may have elevated/reduced concentration of [test], which is usually suggestive of [progression/complication].
OR
There are no diagnostic laboratory findings associated with [disease name].
Electrocardiogram
There are no ECG findings associated with [disease name].
OR
An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
X-ray
There are no x-ray findings associated with [disease name].
OR
An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Echocardiography or Ultrasound
There are no echocardiography/ultrasound findings associated with [disease name].
OR
Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
CT scan
There are no CT scan findings associated with [disease name].
OR
[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
MRI
There are no MRI findings associated with [disease name].
OR
[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Other Imaging Findings
There are no other imaging findings associated with [disease name].
OR
[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
Other Diagnostic Studies
There are no other diagnostic studies associated with [disease name].
OR
[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].
Treatment
Medical Therapy
There is no treatment for [disease name]; the mainstay of therapy is supportive care.
OR
Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].
OR
The majority of cases of [disease name] are self-limited and require only supportive care.
OR
[Disease name] is a medical emergency and requires prompt treatment.
OR
The mainstay of treatment for [disease name] is [therapy].
OR The optimal therapy for [malignancy name] depends on the stage at diagnosis.
OR
[Therapy] is recommended among all patients who develop [disease name].
OR
Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].
OR
Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].
OR
Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].
OR
Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].
Surgery
Surgical intervention is not recommended for the management of [disease name].
OR
Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]
OR
The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].
OR
The feasibility of surgery depends on the stage of [malignancy] at diagnosis.
OR
Surgery is the mainstay of treatment for [disease or malignancy].
Primary Prevention
There are no established measures for the primary prevention of [disease name].
OR
There are no available vaccines against [disease name].
OR
Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
OR
[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].
Secondary Prevention
There are no established measures for the secondary prevention of [disease name].
OR
Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].
References
- ↑ Sawada K, Fujishima N, Hirokawa M (August 2008). "Acquired pure red cell aplasia: updated review of treatment". Br. J. Haematol. 142 (4): 505–14. doi:10.1111/j.1365-2141.2008.07216.x. PMC 2592349. PMID 18510682.
- ↑ Dessypris EN (October 1991). "The biology of pure red cell aplasia". Semin. Hematol. 28 (4): 275–84. PMID 1759168.
- ↑ Dessypris EN (October 1991). "The biology of pure red cell aplasia". Semin. Hematol. 28 (4): 275–84. PMID 1759168.
- ↑ Hirokawa M, Sawada K, Fujishima N, Nakao S, Urabe A, Dan K, Fujisawa S, Yonemura Y, Kawano F, Omine M, Ozawa K (January 2008). "Long-term response and outcome following immunosuppressive therapy in thymoma-associated pure red cell aplasia: a nationwide cohort study in Japan by the PRCA collaborative study group". Haematologica. 93 (1): 27–33. doi:10.3324/haematol.11655. PMID 18166782.
- ↑ Geetha D, Zachary JB, Baldado HM, Kronz JD, Kraus ES (December 2000). "Pure red cell aplasia caused by Parvovirus B19 infection in solid organ transplant recipients: a case report and review of literature". Clin Transplant. 14 (6): 586–91. PMID 11127313.
- ↑ al-Awami Y, Sears DA, Carrum G, Udden MM, Alter BP, Conlon CL (August 1997). "Pure red cell aplasia associated with hepatitis C infection". Am. J. Med. Sci. 314 (2): 113–7. PMID 9258213.
- ↑ Kwong YL, Wong KF (September 1998). "Association of pure red cell aplasia with T large granular lymphocyte leukaemia". J. Clin. Pathol. 51 (9): 672–5. PMC 500904. PMID 9930071.
- ↑ Dessypris EN (October 1991). "The biology of pure red cell aplasia". Semin. Hematol. 28 (4): 275–84. PMID 1759168.
- ↑ Miller AC, Rashid RM (2008). "Three episodes of acquired pure red cell aplasia restricted to pregnancy". J Perinat Med. 36 (3): 270–1. doi:10.1515/JPM.2008.041. PMID 18576941.
- ↑ Macdougall IC (November 2007). "Epoetin-induced pure red cell aplasia: diagnosis and treatment". Curr. Opin. Nephrol. Hypertens. 16 (6): 585–8. doi:10.1097/MNH.0b013e3282f0c4bf. PMID 18089975.
- ↑ Bartakke S, Abdelhaleem M, Carcao M (April 2008). "Valproate-induced pure red cell aplasia and megakaryocyte dysplasia". Br. J. Haematol. 141 (2): 133. doi:10.1111/j.1365-2141.2008.06979.x. PMID 18353161.
- ↑ Thompson DF, Gales MA (1996). "Drug-induced pure red cell aplasia". Pharmacotherapy. 16 (6): 1002–8. PMID 8947971.
- ↑ Rossert J, Yue S, Smirnakis K, Mytych DT, Johnson L, Kouchakji E, Casadevall N (February 2014). "Risk of pure red cell aplasia in patients with hepatitis C receiving antiviral therapy and an erythropoiesis-stimulating agent". Clin. Gastroenterol. Hepatol. 12 (2): 341–5. doi:10.1016/j.cgh.2013.09.065. PMID 24120841.
- ↑ Korde N, Zhang Y, Loeliger K, Poon A, Simakova O, Zingone A, Costello R, Childs R, Noel P, Silver S, Kwok M, Mo C, Young N, Landgren O, Sloand E, Maric I (June 2016). "Monoclonal gammopathy-associated pure red cell aplasia". Br. J. Haematol. 173 (6): 876–83. doi:10.1111/bjh.14012. PMC 5549779. PMID 26999424.
}}
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [3]Mahda Alihashemi M.D. [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]
Synonyms and keywords: Acquired pure megakaryocytic aplasia, pure red cell aplasia, erythroblastopenia
Overview
Acquired pure red cell aplasia (or PRCA) refers to a type of anemia affecting the precursors to red blood cells but not to white blood cells. In PRCA, the bone marrow ceases to produce red blood cells.
Historical Perspective
Classification
Pathophysiology
Causes
Pure red cell aplasia is regarded as an autoimmune disease. It may also be a manifestation of thymoma. It may also be as a result of viral infections such as HIV, herpes, parvovirus B19 (Fifth disease), or hepatitis. Association of pure red cell aplasia with T large granular lymphocyte leukemia is also well recognized, especially in China (http://jcp.bmj.com/cgi/content/abstract/51/9/672). Many cases of PRCA are considered idiopathic in that there is no discernable cause detected.
It can be associated with the administration of erythropoietin.
Differentiating [Disease] from Other Diseases
Epidemiology and Demographics
Risk Factors
Screening
Natural History, Complications, and Prognosis
Natural History
Complications
Prognosis
Diagnosis
Diagnostic Criteria
History and Symptoms
Physical Examination
Laboratory Findings
Imaging Findings
Other Diagnostic Studies
Treatment
Medical Therapy
Drug Side Effect
PRCA is considered an autoimmune disease as it will respond to immunosuppressant treatment such as ciclosporin. It has also been also been shown to respond to treatments with Rituxan.
Contraindicated medications
Pure red cell aplasia is considered an absolute contraindication to the use of the following medications:
Surgery
Prevention
See also
- Diamond-Blackfan anemia (genetic red cell aplasia)
- aplastic anemia (aplasia affecting other bone marrow cells as well)