The human ATP5F1Cgene encodes the gamma subunit of an enzyme called mitochondrial ATP synthase.[1][2][3]
This gene encodes a subunit of mitochondrialATP synthase. Mitochondrial ATP synthase catalyzes adenosine triphosphate(ATP) synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation.
ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, F0, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). This gene encodes the gamma subunit of the catalytic core.
Alternatively splicedtranscript variants encoding different isoforms have been identified. This gene also has a pseudogene on chromosome 14.[3]
References
↑Jabs EW, Thomas PJ, Bernstein M, Coss C, Ferreira GC, Pedersen PL (Jun 1994). "Chromosomal localization of genes required for the terminal steps of oxidative metabolism: alpha and gamma subunits of ATP synthase and the phosphate carrier". Hum Genet. 93 (5): 600–2. doi:10.1007/bf00202832. PMID8168843.
↑Matsuda C, Endo H, Ohta S, Kagawa Y (Dec 1993). "Gene structure of human mitochondrial ATP synthase gamma-subunit. Tissue specificity produced by alternative RNA splicing". J Biol Chem. 268 (33): 24950–8. PMID8227057.
Yoshida M, Muneyuki E, Hisabori T (2001). "ATP synthase--a marvellous rotary engine of the cell". Nat. Rev. Mol. Cell Biol. 2 (9): 669–77. doi:10.1038/35089509. PMID11533724.
Abrahams JP, Leslie AG, Lutter R, Walker JE (1994). "Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria". Nature. 370 (6491): 621–8. doi:10.1038/370621a0. PMID8065448.
Elston T, Wang H, Oster G (1998). "Energy transduction in ATP synthase". Nature. 391 (6666): 510–3. doi:10.1038/35185. PMID9461222.
Yasuda R, Noji H, Kinosita K, Yoshida M (1998). "F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps". Cell. 93 (7): 1117–24. doi:10.1016/S0092-8674(00)81456-7. PMID9657145.
Wang H, Oster G (1998). "Energy transduction in the F1 motor of ATP synthase". Nature. 396 (6708): 279–82. doi:10.1038/24409. PMID9834036.
Hayakawa M, Sakashita E, Ueno E, et al. (2002). "Muscle-specific exonic splicing silencer for exon exclusion in human ATP synthase gamma-subunit pre-mRNA". J. Biol. Chem. 277 (9): 6974–84. doi:10.1074/jbc.M110138200. PMID11744705.
Cross RL (2004). "Molecular motors: turning the ATP motor". Nature. 427 (6973): 407–8. doi:10.1038/427407b. PMID14749816.
Itoh H, Takahashi A, Adachi K, et al. (2004). "Mechanically driven ATP synthesis by F1-ATPase". Nature. 427 (6973): 465–8. doi:10.1038/nature02212. PMID14749837.
Deloukas P, Earthrowl ME, Grafham DV, et al. (2004). "The DNA sequence and comparative analysis of human chromosome 10". Nature. 429 (6990): 375–81. doi:10.1038/nature02462. PMID15164054.
Stelzl U, Worm U, Lalowski M, et al. (2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. PMID16169070.