StAR related lipid transfer domain containing 3(STARD3) is a protein that in humans is encoded by the STARD3 gene.[1]STARD3 also known as metastatic lymph node 64 protein (MLN64) is a late endosomalintegral membrane protein involved in cholesterol transport.[2] STARD3 creates membrane contact sites between the endoplasmic reticulum and late endosomes where it moves cholesterol.[3][4]
This gene encodes a member of a subfamily of lipid trafficking proteins that are characterized by a C-terminal steroidogenic acute regulatory domain and an N-terminal metastatic lymph node 64 domain. The encoded protein localizes to the membranes of late endosomes and may be involved in exporting cholesterol. Alternative splicing results in multiple transcript variants.[provided by RefSeq, Oct 2009].
The closest homolog to STARD3 is the steroidogenic acute regulatory protein (StAR/StarD1), which initiates the production of steroids by moving cholesterol inside the mitochondrion. Thus, MLN64 is also proposed to move cholesterol inside the mitochondria under certain conditions to initiate StAR-independent steroidogenesis, such as in the human placenta which lacks StAR yet produces steroids.[7] This functional role is supported by evidence that MLN64 expression can stimulate steroid production in a model cell system.[7]
A recent study indicates that this protein also specifically binds lutein in the retina.[8]
Structure
STARD3 is a multi-domain protein composed of a N-terminal MENTAL (MLN64 N-terminal) domain, a central FFAT motif (two phenylalanines in an acidic tract), and a C-terminal StAR-related transfer domain (START) lipid transport domain.
The MENTAL domain of STARD3 is similar to the protein STARD3 N-terminal like protein (STARD3NL) also known as MLN64 N-terminal homologue (MENTHO).[9] This domain is composed of 4 transmembrane helices which anchor the protein in the limiting membrane of late endosomes. This domain binds cholesterol and associates with the same domain in STARD3NL.[10]
The START domain of STARD3 is homologous to the StAR protein. X-ray crystallography of the C-terminus indicates that this domain forms a pocket that can bind cholesterol.[11] This places STARD3 within the StarD1/D3 subfamily of START domain-containing proteins.
Tissue distribution
STARD3 is expressed in all tissues in the body at various levels. In the brain, MLN64 is detectable in many but not all cells.[12] Many malignant tumors highly express STARD3 as a result of its gene being part of a Her2/erbB2-containing gene locus that is amplified.
Pathology
Loss of STARD3 has little effect in mice.[13] At the cellular level, changes in STARD3 can disrupt trafficking of endosomes and cause accumulation of cholesterol in late endosomes.[14]
↑Alpy F, Tomasetto C (June 2006). "MLN64 and MENTHO, two mediators of endosomal cholesterol transport". Biochemical Society Transactions. 34 (Pt 3): 343–5. doi:10.1042/BST0340343. PMID16709157.
↑Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, Spiegelhalter C, Kessler P, Mathelin C, Rio MC, Levine TP, Tomasetto C (December 2013). "STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER". Journal of Cell Science. 126 (Pt 23): 5500–12. doi:10.1242/jcs.139295. PMID24105263.
↑Alpy F, Stoeckel ME, Dierich A, Escola JM, Wendling C, Chenard MP, Vanier MT, Gruenberg J, Tomasetto C, Rio MC (February 2001). "The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein". The Journal of Biological Chemistry. 276 (6): 4261–9. doi:10.1074/jbc.M006279200. PMID11053434.
↑Alpy F, Wendling C, Rio MC, Tomasetto C (December 2002). "MENTHO, a MLN64 homologue devoid of the START domain". The Journal of Biological Chemistry. 277 (52): 50780–7. doi:10.1074/jbc.M208290200. PMID12393907.
↑Alpy F, Latchumanan VK, Kedinger V, Janoshazi A, Thiele C, Wendling C, Rio MC, Tomasetto C (May 2005). "Functional characterization of the MENTAL domain". The Journal of Biological Chemistry. 280 (18): 17945–52. doi:10.1074/jbc.M500723200. PMID15718238.
↑Tsujishita Y, Hurley JH (May 2000). "Structure and lipid transport mechanism of a StAR-related domain". Nature Structural Biology. 7 (5): 408–14. doi:10.1038/75192. PMID10802740.
↑King SR, Smith AG, Alpy F, Tomasetto C, Ginsberg SD, Lamb DJ (2006). "Characterization of the putative cholesterol transport protein metastatic lymph node 64 in the brain". Neuroscience. 139 (3): 1031–8. doi:10.1016/j.neuroscience.2006.01.063. PMID16549269.
↑Kishida T, Kostetskii I, Zhang Z, Martinez F, Liu P, Walkley SU, Dwyer NK, Blanchette-Mackie EJ, Radice GL, Strauss JF (April 2004). "Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism". The Journal of Biological Chemistry. 279 (18): 19276–85. doi:10.1074/jbc.M400717200. PMID14963026.
↑Zhang M, Liu P, Dwyer NK, Christenson LK, Fujimoto T, Martinez F, Comly M, Hanover JA, Blanchette‐Mackie EJ, Strauss JF (2002) MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria. J Biol Chem 277: 33300–33310 [PubMed] doi: 10.1074/jbc.M200003200
Further reading
Zhang M, Liu P, Dwyer NK, Christenson LK, Fujimoto T, Martinez F, Comly M, Hanover JA, Blanchette-Mackie EJ, Strauss JF (September 2002). "MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria". The Journal of Biological Chemistry. 277 (36): 33300–10. doi:10.1074/jbc.M200003200. PMID12070139.
Strauss JF, Liu P, Christenson LK, Watari H (November 2002). "Sterols and intracellular vesicular trafficking: lessons from the study of NPC1". Steroids. 67 (12): 947–51. PMID12398991.
Tuckey RC, Bose HS, Czerwionka I, Miller WL (April 2004). "Molten globule structure and steroidogenic activity of N-218 MLN64 in human placental mitochondria". Endocrinology. 145 (4): 1700–7. doi:10.1210/en.2003-1034. PMID14715710.
Katoh M, Katoh M (April 2004). "Evolutionary recombination hotspot around GSDML-GSDM locus is closely linked to the oncogenomic recombination hotspot around the PPP1R1B-ERBB2-GRB7 amplicon". International Journal of Oncology. 24 (4): 757–63. PMID15010812.
Alpy F, Latchumanan VK, Kedinger V, Janoshazi A, Thiele C, Wendling C, Rio MC, Tomasetto C (May 2005). "Functional characterization of the MENTAL domain". The Journal of Biological Chemistry. 280 (18): 17945–52. doi:10.1074/jbc.M500723200. PMID15718238.
Alpy F, Tomasetto C (June 2006). "MLN64 and MENTHO, two mediators of endosomal cholesterol transport". Biochemical Society Transactions. 34 (Pt 3): 343–5. doi:10.1042/BST0340343. PMID16709157.
Murcia M, Faráldo-Gómez JD, Maxfield FR, Roux B (December 2006). "Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol". Journal of Lipid Research. 47 (12): 2614–30. doi:10.1194/jlr.M600232-JLR200. PMID16990645.