Paleanthropology
Editor-In-Chief: Henry A. Hoff
Paleanthropology, or paleoanthropology, is a branch of anthropology concerned with fossil hominids.
Anthropology
Def. "[t]he holistic scientific and social study of humanity,[1] mainly using ethnography as its method"[2] is called anthropology.
"Anthropology is distinguished from other social science disciplines by its emphasis on in-depth examination of context, cross-cultural comparisons, and the importance it places on long-term, experiential immersion in the area of research."[2]
"Our study is the first to address the question of population-level rates of head injuries in Neanderthals and Upper Paleolithic Europeans by examining both injured and non-injured individuals, and using the largest dataset currently available that we compiled from the literature. We used sophisticated statistical modeling, taking into account preservation bias and other factors. As such our study is the first that addresses the question of head injury rates in Neanderthal and Upper Paleolithic modern human populations."[3]
"Neanderthals and early Upper Palaeolithic anatomically modern humans exhibit similar overall incidences of cranial trauma, which are higher for males in both taxa, consistent with patterns shown by later populations of modern humans."[4]
Theoretical paleanthropology
Def. the "scientific study of fossil humans, and the evolution of modern man"[5] is called paleanthropology.
Taxonomy
Def. an "ape of the family Hominidae, having a mostly hairless face, protrusive lips, hands with complex fingerprints, and flat fingernails"[6] "Includes chimpanzees and gorillas [subfamily Homininae], and orangutans [subfamily Ponginae]. Usage may vary to either include or exclude humans (members of Homininae subfamily)"[7] is called a great ape.
Def. any "great ape (including humans and apes) belonging to the superfamily Hominoidea"[8] is called a hominoid.
Classification:
- Ordo: Primates
- Subordo: Haplorrhini
- Infraordo: Simiiformes
- Parvordo: Catarrhini
- Superfamilia: Hominoidea
- Familia: Hominidae
- Subfamilia: Homininae[9]
- Tribus: Hominini
- Subtribus: Hominina[10]
Paleogene
The Paleogene Period extends from 65.5 ± 0.3 to 23.03 ± 0.05 x 106 b2k.
Paleocene
The Paleocene dates from 65.5 ± 0.3 x 106 to 55.8 ± 0.2 x 106 b2k.
Plesiadapis
"Plesiadapis, the oldest known primate-like mammal, lived [58 million years ago.]"[11]
"Infants were fully formed but helpless, so mothers must have provided a great deal of care. Resembling squirrel-like lemurs, Plesiadapis moms also spent a lot of time scurrying around the ground and in trees."[11]
Eocene
The Eocene dates from 55.8 ± 0.2 x 106 to 33.9 ± 0.1 x 106 b2k.
Oligocene
The Oligocene dates from 33.9 ± 0.1 x 106 to 23.03 x 106 b2k.
Holarctic-Antarctic Ice Age
"This late Cenozoic ice age began at least 30 million years ago in Antarctica; it expanded to Arctic regions of southern Alaska, Greenland, Iceland, and Svalbard between 10 and 3 million years ago. Glaciers and ice sheets in these areas have been relatively stable, more-or-less permanent features during the past few million years."[12]
Baboons
"Grossly, human speech concatenates syllables, each with a vowel at its core and each vowel flanked by consonants. Each language has its own particular phonology (i.e. its own inventory of vowel and consonant phonemes and patterns of their use), but the phonemes are drawn systematically from a universal superset structured by the anatomy and physiology of the vocal tract and vocal folds. In particular, all the vowels are differently situated within a roughly triangular [i a u] vocalic space [1,2]."[13]
The procedure for acoustic analysis and VLS labeling is shown in the second image down on the right: "(A) Vocalizations in both human and nonhuman primates use the acoustic signal from the vocal folds vibrating at their fundamental frequency (F0). The formant frequencies depend on the configuration of the vocal tract and the lip opening. (B) [Linear Predictive Coding] LPC analysis was used to reveal the formants of each [vowel like segments] VLS (supplemental information S2 Fig) [28,29]. (C) A Monte Carlo procedure using an n-tube model normalized for the anatomical measures of the baboons’ vocal tracts then served to generate the [Maximal Acoustic Space] MAS (shown by the red line). With this normalized MAS reference, any VLSs could be precisely labeled with the [International Phonetic Alphabet] IPA vowel symbols [30,31]. (D) The VLSs thus labeled correspond to well-documented articulatory configurations with characteristic tongue positions and lip openings. (A-D) Red-&-black dots indicate the corresponding values for this illustrative grunt vocalization, which is classified as [u]."[13]
"[B]aboons’ wahoos, yaks, barks and other vocalizations [contain] evidence of five vowel-like sounds — a sign that the physical capacity for speech may have evolved over much longer timescales than previously thought."[14]
"By comparing the vocal tract of humans and their close primate relatives, researchers can get a sense of which particular traits were necessary for the emergence of speech."[14]
The third image down on the right shows the anatomical "structure of the baboon tongue and muscle recruitment during VLS production: (A) The baboon’s muscle fiber orientation allows tongue motion along two main axes (see also supplemental information S3 Fig). The first axis produces the front/back contrast [æ] ⇔ [u ɔ], including the [u] VLS, which requires a constriction in the back of the vocal tract. Movement along this axis uses antagonistic activation of GGam and SG tongue muscles. The second axis produces the [ɑ] ⇔ [ɨ] VLS contrasts by controlling vertical tongue displacement using the GGp and HG tongue muscles. (B) The baboons’ different VLSs can each be explained by recruitment of a unique configuration of tongue muscles. GGa, GGm, GGp: anterior, medium, posterior part of the genioglossus; HG: hyoglossus; SG: styloglossus."[13]
Speech “engages anatomical traits that might leave fossil clues, as well as overt anatomical, physiological, and behavioral aspects for which parallels can be sought in living primates.” [13]
The fourth image down on the right shows an anatomic sagittal view of the head of a female baboon with vocalization organs labeled: "(1) hyoid bone, (2) air sac, (3) thyroid cartilage, (4) epiglottis, (5) arytenoid cartilage, (6) vocal folds and glottis, (7) cricoid cartilage, (8) trachea, (9) lips, (10) incisors, (11) mandible, (12) hard palate, (13) velum, (14) pharyngeal wall, (15-16-17) anterior GGa, medial GGm, and posterior genioglossus GGp,(18) superior longitudinalis, (19) geniohyoid GH, (20) digastric anterior, (21) C1, (22) C2,(23) C3, (24) mid sagittal line of the vocal tract used to infer the tract length and the computation of the MAS. Note the orientation of the fibers of the GGa, GGm and GGp muscles, which approach vertical on the anterior part of the tongue but are effectively horizontal in the posterior part. The fibers of the styloglossus (SG) muscle on the lateral sides of the tongue have approximately the same inclination as those of a human baby [10]. As in humans, the hyoglossus (HG) muscle has two components which are inserted into the body of the hyoid bone and over the entire extent of the great horn. Its fibers are oriented vertically as found in human children. (N.B.: SG and HG are both lateral to the midline, and do not appear on this view.) This anatomical study shows that a baboon’s tongue has the same musculature as a human’s. Regarding shape and proportions, the baboon’s tongue is more similar to that of a child than that of a human adult."[13]
"In large part, human speech uses vowels as the kernel of a sound and places consonants around those vowels. So the number of different vowels you can make is important, because it means you can make a greater variety of potentially meaningful chunks of sound."[14]
"Think about “cat,” “kit,” “cut,” “coat,” “coot,” “keet,” and “caught” — seven words with distinct meanings. Each has a “k” sound at the beginning and a “t” at the end; what separates them is their vowels. Without each of those subtly distinguishable vowels, English speakers wouldn’t be able to tell those words apart."[14]
"Languages have different inventories and patterns of vowel and consonant usage, but they all rely on roughly the same vocal tract shape. And for a long time, many researchers assumed that nonhuman primates couldn’t make vowel-like sounds because their larynxes (or voice boxes) sat much higher in the neck than human larynxes do. That assumption had major implications for theories on the emergence of language, which remains a uniquely human ability."[14]
“This theory has often been used to buttress the theoretical claim of a recent date for language origin, e.g. 70,000-100,000 years ago. It also diverted scientists' interests away from articulated sound in nonhuman primates as a potential homolog of human speech, and thus lent support to less direct explanations of language evolution, involving communicative gestures, complex cognitive or neural functions, or genetics.”[13]
"Lowered larynxes have been found in other animals that have no ability to make vowel sounds. And human babies, who have very high larynxes, can still generate the same vowel range as adults. Scientists have begun to realize, thanks to computer modeling work, that the movement and control of the tongue’s position is actually much more important in making vowel sounds than the height of the larynx."[14]
Formants "are concentrations of acoustic energy around key frequencies in human speech, and their distribution is defined in part by the shape of our vocal tract."[14]
"The individual formants found in a vowel can tell you the configuration of the mouth that made it — for example, whether the lips are rounded, how high the tongue is, and whether the tongue is pushed forward toward the teeth or back in the mouth."[14]
"In human speech, each vowel has a particular blend of formants that make it a unique, easily identifiable sound."[14]
"15 Guinea baboons (12 females and three males) [such as those in the image on the right, live] in an outdoor enclosure at the National Center for Scientific Research’s primate center in Rousset-sur-Arc, France."[14]
Five "types of baboon vocalizations [appear] to feature formants — grunts, wahoos, barks, yaks and mating calls."[14]
"After analyzing the 1,335 spontaneous vocalizations (and after splitting the wahoos into their wa- and -hoo subunits), the researchers concluded that the recordings held 1,404 “vowel-like segments.”"[14]
"For the ability to make specific vowel-like sounds, it seemed that tongue position really was more important than the larynx’s height."[14]
"The ability to articulate vowel-like sounds, necessary for the development of human speech, was probably shared by the last common ancestor of both humans and baboons [among the Cercopithecoidea] some 25 million years ago."[14]
“Whatever the course of the emergence of language and speech, the evidence developed in this study does not support the hypothesis of the recent, sudden, and simultaneous appearance of language and speech in modern Homo sapiens.”[13]
Rukwapithecus
Rukwapithecus is "an early member of the hominoids, the group containing the great apes (gorillas, chimpanzees, bonobos, orangutans and humans) and lesser apes (gibbons)."[15]
"The fossil remnants ... date back 25 million years ago, filling a gap in the fossil record that reveals when apes and monkeys first diverged."[15]
"These discoveries are important because they offer the earliest fossil evidence for either of these primate groups".[16]
"The fossils were found in a layer of the Rukwa Rift in Tanzania. The region is part of the East African Rift, a tectonic-plate boundary where the Earth's crust is being pulled apart."[15]
“The new discoveries are particularly important for helping to reconcile a long-standing disagreement between divergence time estimates derived from analyses of DNA sequences from living primates and those suggested by the primate fossil record.”[17]
"Studies of clock-like mutations in primate DNA have indicated that the split between apes and Old World monkeys occurred between 30 million and 25 million years ago."[17]
Neogene
The Neogene dates from 23.03 x 106 to 2.58 x 106 b2k.
Miocene
The Miocene dates from 23.03 x 106 to 5.332 x 106 b2k.
"Hominoids diversified successfully in Europe up to 6 million–years ago, between the middle Aragonian Mammal Stage (14 Ma, Griphopithecus, Dryopithecus) and the beginning of the late Vallesian (9.7 Ma, Dryopithecus, Ankarapithecus, Graecopithecus; Andrews and Bernor, 1999; Agustí et al., 2001). At 9.6Ma, the Vallesian Crisis (Agustí and Moyà-Solà, 1990; Agustí et al., 1997) led to the extinction of the hominoids in Europe, together with most of the highly diversified early Vallesian fauna. Hominoids like Ankarapithecus or Graecopithecus disappeared entirely from the fossil record, and only Oreopithecus in its Tuscan refuge, and Sivapithecus in South Western Asia, survived this extinction event. Dryopithecus is still found in some early late Vallesian localities dated at about 9.6 Ma (Can Llobateres 2, Viladecavalls; Agustí et al., 1996), but disappeared from the fossil record shortly after (this species may have survived until the early Turolian in the Caucasus, where some remains in the Georgian site of Udabno were described as Udabnopithecus, Gabunia et al., 2001)."[18]
Tortonian
The Tortonian lasted from 11.63 Ma to 7.246 Ma.
Gigantopithecus is an extinct genus of ape that existed from perhaps nine million years to as recently as one hundred thousand years ago, at the same period as Homo erectus would have been dispersed,[19] in what is now India, Vietnam, China and Indonesia placing Gigantopithecus in the same time frame and geographical location as several hominin species.[20][21] The primate fossil record suggests that the species Gigantopithecus blacki were the largest known primates that ever lived, standing up to 3 m (9.8425197 ft) and weighing as much as 540 (Expression error: Unexpected round operator. ),[19][22][23][24] although some argue that it is more likely that they were much smaller, at roughly 1.8 (Expression error: Unexpected round operator. ) in height and 180 (Expression error: Unexpected round operator. ) in weight.[25][26][27][28]
Messinian
"The GSSP of the Messinian Stage, which per definition marks the base of the Messinian and, hence, the boundary between the Tortonian and Messinian Stages of the Upper Miocene Subseries, is Oued Akrech (Morocco) where the Messinian GSSP is now formally designated at the base of the reddish layer of sedimentary cycle no. 15. This point coincides closely with the first regular occurrence (FRO) of the planktonic foraminiferal Globorotalia miotumida group and the first occurrence (FO) of the calcareous nannofossil Amaurolithus delicatus, and falls within the interval of reversed polarity that corresponds to C3Br.1r. The base of the reddish layer and, thus, the Messinian GSSP has been assigned an astronomical age of 7.251 Ma."[29]
"The correlation of characteristic sedimentary cycle patterns to the astronomical record resulted in an astronomical age of 7.24 Ma (Hilgen et al., 1995), in good agreement with the radiometric age estimates of Vai et al. (1993) and Laurenzi et al. (1997)."[29]
The integrated magnetostratigraphy, calcareous plankton biostratigraphy and cyclostratigraphy of section Oued Akrech is diagrammed on the left.
Prehistory
The prehistory period dates from around 7 x 106 b2k to about 7,000 b2k.
The graph at left shows many of the hominins that have been discovered so far in Africa and elsewhere on Earth.
"In the absence of any gorilla fossil evidence, it is not possible to trace the historical genesis of these adaptations, but the three gorilla populations are assumed to have similar dietary selective regimes in comparison to other taxa that would determine the fitness of certain traits".[30]
Sahelanthropus tchadensis
"Sahelanthropus tchadensis is one of the oldest known species in the human family tree. This species lived sometime between 7 and 6 million years ago in West-Central Africa (Chad). Walking upright may have helped this species survive in diverse habitats, including forests and grasslands. Although we have only cranial material from Sahelanthropus, studies so far show this species had a combination of ape-like and human-like features. Ape-like features included a small brain (even slightly smaller than a chimpanzee’s), sloping face, very prominent browridges, and elongated skull. Human-like features included small canine teeth, a short middle part of the face, and a spinal cord opening underneath the skull instead of towards the back as seen in non-bipedal apes."[31]
"Some of the oldest evidence of a humanlike species moving about in an upright position comes from Sahelanthropus. The foramen magnum (the large opening where the spinal cord exits out of the cranium from the brain) is located further forward (on the underside of the cranium) than in apes or any other primate except humans. This feature indicates that the head of Sahelanthropus was held on an upright body, probably associated with walking on two legs."[31]
"The first (and, so far, only) fossils of Sahelanthropus are nine cranial specimens from northern Chad. A research team of scientists led by French paleontologist Michael Brunet uncovered the fossils in 2001, including the type specimen TM 266-1-606-1. Before 2001, early humans in Africa had only been found in the Great Rift Valley in East Africa and sites in South Africa, so the discovery of Sahelanthropus fossils in West-Central Africa shows that the earliest humans were more widely distributed than previously thought."[31]
Orrorin tugenensis
"Living around 6 million years ago, Orrorin tugenensis is the one of the oldest early humans on our family tree. Individuals of this species were approximately the size of a chimpanzee and had small teeth with thick enamel, similar to modern humans. The most important fossil of this species is an upper femur, showing evidence of bone buildup typical of a biped - so Orrorin tugenensis individuals climbed trees but also probably walked upright with two legs on the ground."[32]
"A research team led by French paleontologist Brigitte Senut and French geologist Martin Pickford discovered this species in the Tugen Hills region of central Kenya. They found more than a dozen early human fossils dating between about 6.2 million and 6.0 million years old. Because of its novel combination of ape and human traits, the researchers gave a new genus and species name to these fossils, Orrorin tugenensis, which in the local language means “original man in the Tugen region.” So far, Orrorin tugenensis is the only species in the genus Orrorin."[32]
"Orrorin’s femur (thigh bone) and humerus (upper arm bone) are about 1.5 times larger than those of Lucy’s (AL 288-1). Therefore, scientists estimate that Orrorin would have been 1.5 times larger than Au. afarensis, suggesting a size similar to a female chimpanzee, between about 30 and 50 kg."[32]
Ardipithecus kadabba
"Ardipithecus kadabba was bipedal (walked upright), probably similar in body and brain size to a modern chimpanzee, and had canines that resemble those in later hominins but that still project beyond the tooth row. This early human species is only known in the fossil record by a few post-cranial bones and sets of teeth. One bone from the large toe has a broad, robust appearance, suggesting its use in bipedal push-off."[33]
"When he found a piece of lower jaw lying on the ground in the Middle Awash region of Ethiopia 1997, paleoanthropologist Yohannes Haile-Selassie didn’t realize that he had uncovered a new species. But 11 specimens from at least 5 individuals later, Haile-Selassie was convinced he had found a new early human ancestor. The fossils—which also included hand and foot bones, partial arm bones, and a clavicle (collarbone)—were dated to 5.6–5.8 million years old. One of the specimens, a toe bone, is dated to 5.2 million years old; this fossil has features of bipedal walking. Faunal (fossil animal) evidence from the site indicated that the early humans there lived in a mixture of woodlands and grasslands, and had plenty of access to water via lakes and springs."[33]
"In 2002, six teeth were discovered in the Middle Awash at the site Asa Koma. The dental wear patterns confirmed the early human fossils were unique and not a subspecies of A. ramidus. Based on these teeth, paleoanthropologists Yohannes Haile-Selassie, Gen Suwa, and Tim White allocated the fossils in 2004 to a new species they named Ardipithecus kadabba (‘kadabba’ means ‘oldest ancestor’ in the Afar language)."[33]
Pliocene
The Pliocene ranges from 5.332 x 106 to 2.588 x 106 b2k.
Zanclean
"The boundary-stratotype of the stage is located in the Eraclea Minoa section on the southern coast of Sicily (Italy), at the base of the Trubi Formation. The age of the Zanclean and Pliocene GSSP at the base of the stage is 5.33 Ma in the orbitally calibrated time scale, and lies within the lowermost reversed episode of the Gilbert Chron (C3n.4r), below the Thvera normal subchron."[34]
Ardipithecus ramidus
There "is 4.4-million-year-old Ardipithecus ramidus".[11]
"It is as close as we have ever come to finding the last common ancestor of chimpanzees and humans."[35]
"The oldest-known potential hominid is Ardipithecus ramidus, represented by some fragmentary fossils from the 4.4-million-year-old site of Aramis in Ethiopia [...]."[36]
Australopithecus anamensis
"Australopithecus anamensis has a combination of traits found in both apes and humans. The upper end of the tibia (shin bone) shows an expanded area of bone and a human-like orientation of the ankle joint, indicative of regular bipedal walking (support of body weight on one leg at the time). Long forearms and features of the wrist bones suggest these individuals probably climbed trees as well."[37]
"In 1965, a research team led by Bryan Patterson from Harvard University discovered a single arm bone (KNM-KP 271) of an early human at the site of Kanapoi in northern Kenya. But without additional human fossils, Patterson could not confidently identify the species to which it belonged. In 1994, a research team led by paleoanthropologist Meave Leakey found numerous teeth and fragments of bone at the same site. Leakey and her colleagues determined that the fossils were those of a very primitive hominin and they named a new species called Australopithecus anamensis (‘anam’ means ‘lake’ in the Turkana lanaguage). Researchers have since found other Au. anamensis fossils at nearby sites (including Allia Bay), all of which date between about 4.2 million and 3.9 million years old."[37]
"Australopithecus anamensis individuals had thickly-built, long, narrow jaws with their side rows of teeth arranged in parallel lines. Their strong jaws combined with heavily enameled teeth suggest Au. anamensis individuals may at times have eaten hard, abrasive foods, but they likely were plant-eaters in general, relying on both fruits and tough foods such as nuts. The sites where remains of Au. anamensis have been found were forests and woodlands that grew around lakes."[37]
"Jaw remains suggest that this species was the direct ancestor of Australopithecus afarensis, and possibly the direct descendent of a species of Ardipithecus."[37]
"A team led by Meave Leakey found the A. anamensis type specimen, mandible KNM-KP 29281, in Kenya in 1994. In 2006, Tim White’s team found A. anamensis fossils in the Middle Awash, Ethiopia, including the largest hominin canine yet discovered and the earliest Australopithecus femur."[37]
"This 4.1 million year old upper tibia (shin bone) fossil, KNM-KP 29285, comes from Australopithecus anamensis, an early human species that lived near open areas and dense woods. Their bodies had evolved in ways that enabled them to walk upright most of the time while still being able to climb trees. As a result, they could take advantage of both habitats. The top part of the tibia (where the lower leg meets the knee) is concave, or depressed from stress. This shows that the individual often put weight on the bone—evidence of standing upright. The lower part of the tibia (where the lower leg meets the ankle) is wider or thicker—evidence that it acted as a type of shock absorber as this individual walked ."[38]
Australopithecus afarensis
Australopithecus afarensis is an extinct hominid that lived between 3.9 and 2.9 million years ago.[39]
"Among the earliest known relatives of humanity definitely known to walk upright was Australopithecus afarensis, the species including the famed 3.2-million-year-old "Lucy." [Found at Hadar, Ethiopia] Australopithecines are the leading candidates for direct ancestors of the human lineage, living about 2.9 million to 3.8 million years ago in East Africa."[40]
Compared to the modern and extinct great apes, A. afarensis has reduced canines and molars, although they are still relatively larger than in modern humans. A. afarensis also has a relatively small brain size (~380–430 cm3, [range 372–550, mean 428, n = 6, 2.95–3.24 Ma][41]) and a prognathic face (i.e. a face with forward projecting jaws).
""When looking at how we became human, an important moment in our history was abandoning a lifestyle in the trees, and when that happened is a big question."[42]
"Lucy's adult shoulder sockets also faced upward, suggesting that, like modern apes, her species was equipped for tree-climbing throughout its life span. Humans, on the other hand, are born with a somewhat downward-facing socket that gradually moves to face outward as people mature."[40]
"Her long arm bones [shown in the image on the right] and the crest created by muscles that attach to her humerus (upper arm bone) are evidence of a powerful chest and strong upper arm muscles necessary for tree climbing. Her short, broad pelvis also held her body upright while angled-in thigh bones kept her body weight directly above her knees while in stride, both requirements for walking efficiently on two legs. Lucy’s compact feet were capable of supporting her full body weight as she walked upright, but her long, curved toe bones resemble that of a tree-climbing ape. Because Lucy could walk upright on the ground and climb trees, she and other members of her species were able to use resources from woodlands, grasslands, and other diverse environments."[43]
Australopithecus prometheus
On the right is an image of Little Foot’s nearly complete fossil skeleton, recently freed from rock that had encased it, lying in a display case at the University of the Witwatersrand in Johannesburg.
"An ancient hominid skeleton dubbed Little Foot possessed a brain largely similar to that of modern chimpanzees and an inner ear with a mix of apelike and humanlike features, [...] of the adult female’s 3.67-million-year-old skeleton, point to the piecemeal evolution of humanlike traits in close relatives of our species [...]."[44]
Analyses "of trunk and limb bones indicate that Little Foot, who lived perhaps a million years before the emergence of the human genus, Homo, already walked upright about as well as people today do [...]."[44]
"Although Little Foot consists of a nearly complete skeleton, her evolutionary identity is controversial. Little Foot’s discoverer [...] assigns the find to Australopithecus prometheus, an early extinct hominid species [...]. Other researchers regard Little Foot as an early member of Australopithecus africanus, a species previously known from fossils discovered at several South African sites [...]."[44]
A "3-D digital reconstruction, or endocast, of Little Foot’s brain surface [has been compared] with digital endocasts of 10 other South African hominid specimens dating to between roughly 1.5 million and 3 million years ago."[44]
"Little Foot had a small brain, only about one-third of the volume of a modern adult woman’s brain [...]. And overall, Little Foot had a more chimplike brain than any other southern African hominid, including specimens from species such as A. africanus and Paranthropus robustus, [...]. That’s not surprising, [...] since Little Foot is also the oldest known southern African hominid."[44]
"The uncorrected and therefore minimum cranial capacity estimate [endocranial volume (ECV)] is 408 cm3 and plots at the lower end of Australopithecus variation [range 442–558, mean 503, n = 3, age range 2.01–2.8 Ma]."[41]
"Chimplike positioning of a tissue groove toward the back of the brain indicates that Little Foot had a proportionately larger neural area devoted to vision than people do [...]. In human brains, a relatively smaller visual area makes room for an expanded neural section involved in integrating sensory and spatial information."[44]
A "complex, humanlike set of blood vessels clustered on part of Little Foot’s brain surface could have fueled brain expansion observed in later hominids [...]."[44]
"Even if Little Foot’s brain was different from ours, the vascular system that allows for blood flow and may control brain temperature was possibly already present."[45]
The "left side of Little Foot’s brain protruded out slightly more in the back than the right side. Present-day humans and chimps possess such asymmetrical brains, as did hominids that evolutionarily followed Little Foot. Signs of brain asymmetry roughly 3.7 million years ago strengthen the possibility that this trait characterized the last common ancestor of hominids and modern great apes, which may have lived 7 million years ago or more."[45]
"2-million- to 3-million-year-old hominid endocasts from eastern and southern Africa preserve grooves on the brain’s surface — created by adjacent tissue folds — positioned like those of present-day chimps."[46]
Those "particular furrows of brain tissue appear in humanlike positions on the same endocasts."[44]
"A computerized reconstruction of the ancient South African hominid’s inner ear bones reveals chimplike dimensions of a set of hoop-shaped structures, called the semicircular canals, that help control balance and motion, [...]. That configuration is consistent with Little Foot having engaged in a mix of two-legged walking and careful movement along tree branches, [...]."[44]
A "spiral-shaped inner ear cavity called the cochlea, which translates sound vibrations into nerve signals sent to the brain, looks more humanlike than chimplike in Little Foot. Inner ear similarities of Little Foot to other Australopithecus specimens leave unclear whether those hominids could hear the same range of sounds as people do today."[45]
Piacenzian
"The base of the beige marl bed of the small-scale carbonate cycle 77 (sensu Hilgen, 1991b) is the approved base of the Piacenzian Stage (that is the Lower Pliocene-Middle Pliocene boundary). It corresponds to precessional excursion 347 as numbered from the present with an astrochronological age estimate of 3.600 Ma (Lourens et al., 1996a)."[47]
Stone Age
MIS Boundary MG2/MG3 is at 3347 ka.[48]
MIS Boundary MG1/MG2 is at 3332 ka.[48]
MIS Boundary M2/MG1 is at 3312 ka.[48]
MIS Boundary M1/M2 is at 3264 ka.[48]
Def. a "broad prehistoric period during which humans widely used stone for toolmaking"[49] is called the Stone Age.
Australopithecus deyiremeda
"A fossil find adds another twig to the human evolutionary tree, giving further evidence that the well-known “Lucy” species had company in what is now Ethiopia [...] A lower jaw, plus jaw fragments and teeth, dated at 3.3 million to 3.5 million years old, were found in the Afar region of northern Ethiopia four years ago."[50]
"New fieldwork in West Turkana, Kenya, has identified evidence of much earlier hominin technological behaviour. We report the discovery of Lomekwi 3, a 3.3-million-year-old archaeological site where in situ stone artefacts occur in spatiotemporal association with Pliocene hominin fossils in a wooded palaeoenvironment. The Lomekwi 3 knappers, with a developing understanding of stone’s fracture properties, combined core reduction with battering activities."[51]
"[E]arlier species, such as Kenyanthropus platyops, bones of which have been found on the western shore of Lake Turkana, and A. afarensis, may have made tools by building on the cruder abilities seen in apes and monkeys. The Lomekwi tools were made in a forest environment, also questioning the idea that open landscapes catalysed tool use."[51]
Australopithecus africanus
"Au. africanus was anatomically similar to Au. afarensis, with a combination of human-like and ape-like features. Compared to Au. afarensis, Au. africanus had a rounder cranium housing a larger brain and smaller teeth, but it also had some ape-like features including relatively long arms and a strongly sloping face that juts out from underneath the braincase with a pronounced jaw. Like Au. afarensis, the pelvis, femur (upper leg), and foot bones of Au. africanus indicate that it walked bipedally, but its shoulder and hand bones indicate they were also adapted for climbing."[52]
Endocranial volumes ranged 414–508 cm3, mean 455, from n = 5 individuals, 2.01–3.03 Ma.[41]
"The Taung child, found in 1924, was the first to establish that early fossil humans occurred in Africa. After Prof. Raymond Dart described it and named the species Australopithecus africanus (meaning southern ape of Africa), it took more than 20 years for the scientific community to widely accept Australopithecus as a member of the human family tree."[52]
"No stone tools have been discovered in the same sediments as Au. africanus fossils; however, for a long time researchers believed Au. africanus was a hunter. Raymond Dart created the term ‘osteodontokeratic’ culture (osteo = bone, donto = tooth, keratic = horn) in the 1940s and 1950s because remains of this species were found alongside broken animal bones. Dart assumed these broken animal bones, teeth and horns were used by Au. africanus as weapons; however, in the 1970s and 1980s, other scientists began to recognize that predators such as lions, leopards, and hyenas were instead responsible for leaving these broken animal bones. These predators even ate Au. africanus individuals, too."[52]
"Despite the carnivorous preferences of their contemporaneous predators, Au. africanus individuals had a diet similar to modern chimpanzees, which consisted of fruit, plants, nuts, seeds, roots, insects, and eggs."[52]
"Scientists can tell what Au. africanus may have eaten from looking at the remains of their teeth---tooth-size, shape, and tooth-wear can all provide diet clues. Dental microwear studies found more scratches than pits on Au. africanus teeth compared to a contemporaneous species, P. robustus. This pattern indicates that Au. africanus ate tough foods but also had a very variable diet including softer fruits and plants."[52]
Paranthropus aethiopicus
"Paranthropus aethiopicus is still much of a mystery to paleoanthropologists, as very few remains of this species have been found. The discovery of the 2.5 million year old ’Black Skull’ in 1985 helped define this species as the earliest known robust australopithecine. P. aethiopicus has a strongly protruding face, large megadont teeth, a powerful jaw, and a well-developed sagittal crest on top of skull, indicating huge chewing muscles, with a strong emphasis on the muscles that connected toward the back of the crest and created strong chewing forces on the front teeth."[53]
"Paranthropus aethiopicus was originally proposed in 1967 by a team of French paleontologists to describe a toothless partial mandible (Omo 18) that was thought to differ enough from the mandibles of the early human species known at that time. This naming of a new species was generally dismissed; many paleoanthropologists thought it premature to name a new species on the basis of a single incomplete mandible. In 1985, when Alan Walker and Richard Leakey discovered the famous "Black Skull" west of Lake Turkana in Kenya, the classification reemerged. With its mixture of derived and primitive traits, KNM-WT 17000 validated, in the eyes of many scientists, the recognition of a new "robust" australopithecine species dating to at least 2.5 million years ago in eastern Africa."[53]
"A massive humerus (upper arm bone) from East Turkana and an elongated ulna (one of the lower arm bones) from Omo may indicate a large forelimb and large body, but no post-cranial bones are securely ascribed to this species."[53]
"Many features of the skull are quite similar to Australopithecus afarensis, and P. aethiopicus may be a descendent of this species. It is most likely the ancestor of the robust australopithecine species found later in Eastern Africa, Paranthropus boisei."[53]
"The dark color comes from minerals in the soil that were absorbed by the skull as it fossilized. The front teeth fell out and the others were broken off after the individual died. This is the only known adult skull of this species, which is considered a direct ancestor of Paranthropus boisei."[53]
Paranthropus aethiopicus lived about 2.7 to 2.3 million years ago in Eastern Africa (Turkana basin of northern Kenya, southern Ethiopia).[53]
"This skull didn’t start out black – it was white, like all other bones in living animals. KNM-WT 17000 or the ’Black Skull’ only got its dramatic dark color after millions of years of sitting in a manganese-rich soil and absorbing minerals as it fossilized."[53]
"This nearly complete fossilized cranium has a face that projects far outward from the forehead, widely flaring zygomatic arches, and the largest sagittal crest of any early human. Though some of the individual’s front teeth fell out and others were broken off after death, molar and premolar roots in the jaw indicate that this early human would have also had massive cheek teeth; all of these features are adaptations for heavy chewing."[53]
"Because of the sagittal crest and the skull’s small cranial capacity (410cc), researchers originally classified the ’Black Skull’ as Paranthropus boisei - but further comparison showed more similarities to Australopithecus afarensis. This mosaic of features led scientists to assign the specimen to a new species: Paranthropus aethiopicus."[53]
The ’Black Skull’ is the only known adult skull of Paranthropus aethiopicus."[53]
Endocranial volume ranges 410–491 cm3, mean 443, n = 3, 1.7–2.41 Ma.[41]
Paleolithic history
The paleolithic period dates from around 2.6 x 106 b2k to the end of the Pleistocene around 12,000 b2k.
Quaternary
The "whole change elapsed just opposite the course of events that characterized the great glacial oscillations with sudden warming followed by slow cooling. Therefore, the two phenomena hardly have the same cause."[54]
Pleistocene
The Pleistocene dates from 2.588 x 106 to 11,700 b2k.
Gelasian
"The base of the Quaternary System is defined by the Global Stratotype Section and Point (GSSP) of the Gelasian Stage at Monte San Nicola in Sicily, Italy, currently dated at 2.58 Ma."[55]
Australopithecus garhi
"This species is not well documented; it is defined on the basis of one fossil cranium and four other skull fragments, although a partial skeleton found nearby, from about the same layer, is usually included as part of the Australopithecus garhi sample. The associated fragmentary skeleton indicates a longer femur (compared to other Australopithecus specimens, like ‘Lucy’) even though long, powerful arms were maintained. This suggests a change toward longer strides during bipedal walking."[56]
"The human fossil record is poorly known between 3 million and 2 million years ago, which makes the finds from the site of Bouri, Middle Awash Ethiopia, particularly important. First in 1990 and then from 1996 to 1998, a research team led by Ethiopian paleoanthropologist Berhane Asfaw and American paleoanthropologist Tim White found the partial skull (BOU-VP-12/130) and other skeletal remains of an early humans dated to around 2.5 million years old. In 1997, the team named the new species Australopithecus garhi; the word ‘garhi’ means ‘surprise’ in the Afar language."[56]
"The principal specimen BOU-VP-12/1, a cranium, may be a male. It is similar in size to the average of other Australopithecus specimens."[56]
"Fossils of Australopithecus garhi are associated with some of the oldest known stone tools, along with animal bones that were cut and broken open with stone tools. It is possible, then, that this species was among the first to make the transition to stone toolmaking and to eating meat and bone marrow from large animals."[56]
The "partial cranium, designated as the species’ holotype, is actually a set of fragments consisting of the front and side portions of the skull, the upper jaw, and upper teeth. The lower face is prognathic and the back teeth are very large with thick enamel. The estimated cranial capacity from the reconstructed cranium is 450 cubic centimeters, similar to other australopithecines."[56]
"Cut-marked bones dated to 2·5 Ma from Bouri in Ethiopia are now providing important clues on the function of these artefacts. In addition, Australopithecus garhi known from contemporary deposits at Bouri may be the best candidate responsible for the oldest artefacts."[57]
In the three images, the center one is higher magnification, greater detail, and provides a facial profile.
Endocranial volume is 450 cm3, n = 1, 2.45–2.50 Ma.[41]
Homo habilis
"[T]he hobbit [may have] evolved from Homo habilis, whose brains were only about 600 cubic cm (37 cubic inches)."[58]
From the geochronology under the history section, Homo habilis appeared about 2.5 x 106 b2k.
"The most comprehensive dataset ever assembled on our early human ancestors provides evidence that the first humans emerged in South Africa, and that the first humans to migrate out of Africa came from a small-bodied species such as Homo habilis, aka "Handy Man.""[59]
Traditionally, Handy Man "was viewed as a little human, with a relatively big brain, bipedalism, and tool-making forming part of the picture."[60]
"The study rejected the theory that Homo floresiensis individuals, "Hobbit Humans," were simply deformed members of our own species. The data instead shows that these tiny residents of the Island of Flores, Indonesia, did indeed belong to a unique species. Collard and his team suspect that the hobbits descended from a small-bodied early Homo species, such as Handy Man."[59]
"Following this theory, Handy Man gave rise to Upright Man in Asia."[59]
"Homo erectus would then have spread from Asia into Africa, rather than the reverse, which is what the current consensus contends."[60]
As for Neanderthals, "We're pretty sure that Neanderthals are an exclusively Eurasian species; there is no evidence for them in Africa."[60]
"The species that gave rise to Neanderthals remains a mystery for now. This puzzlement about them, and other Middle Pleistocene humans, is referred to as "the muddle in the middle."[60]"[59]
"The fact that Australopithecus sediba groups with Homo is consistent with the idea that the earliest known representative of the genus Homo originated in South Africa."[60]
Pan troglodytes
The "first fossil chimpanzee [...], from the Kapthurin Formation, Kenya, show that representatives of Pan were present in the East African Rift Valley during the Middle Pleistocene, where they were contemporary with an extinct species of Homo. Habitats suitable for both hominins and chimpanzees were clearly present there during this period, and the Rift Valley did not present an impenetrable barrier to chimpanzee occupation."[61]
"Although tool use is known to occur in species ranging from naked mole rats [1] to owls [2], chimpanzees are the most accomplished tool users [3–5]. [The] first account of habitual tool use during vertebrate hunting by nonhumans [occurred at] the Fongoli site in Senegal[. Ten] different chimpanzees use tools to hunt prosimian prey in 22 bouts. This includes immature chimpanzees and females, members of age-sex classes not normally characterized by extensive hunting behavior. Chimpanzees made 26 different tools, and we were able to recover and analyze 12 of these. Tool construction entailed up to five steps, including trimming the tool tip to a point. Tools were used in the manner of a spear, rather than a probe or rousing tool."[62]
Paranthropus boisei
"Like other members of the Paranthropus genus, P. boisei is characterized by a specialized skull with adaptations for heavy chewing. A strong sagittal crest on the midline of the top of the skull anchored the temporalis muscles (large chewing muscles) from the top and side of the braincase to the lower jaw, and thus moved the massive jaw up and down. The force was focused on the large cheek teeth (molars and premolars). Flaring cheekbones gave P. boisei a very wide and dish-shaped face, creating a larger opening for bigger jaw muscles to pass through and support massive cheek teeth four times the size of a modern human’s. This species had even larger cheek teeth than P. robustus, a flatter, bigger-brained skull than P. aethiopicus, and the thickest dental enamel of any known early human. Cranial capacity in this species suggests a slight rise in brain size (about 100 cc in 1 million years) independent of brain enlargement in the genus Homo."[63]
"Paleoanthropologists actually found the first fossils belonging to P. boisei in 1955, but it wasn’t until Mary Leakey’s 1959 discovery of the ‘Zinj’ skull (OH 5) that scientists knew what they had found was a new species. ‘Zinj’ became the type specimen for P. boisei and, soon after, arguably the most famous early human fossil from Olduvai Gorge in northern Tanzania."[63]
"If you compare a male P. boisei individual to a male Au. africanus who lived during a similar time period (3.3–2.1 Mya), you’ll see why the species Paranthropus got the name ‘robust.’ While both males are on average 4 ft 6 inches tall, the average male P. boisei was 18 pounds heavier than a male Au. africanus of the same height. Even P. boisei females were slightly larger and heavier than what scientists had seen before in the fossil record of other early humans."[63]
"Male and female P. boisei individuals were closer in body size than individuals of other species of early humans preceding them, but this species still had a fairly high level of sexual dimorphism."[63]
"This species was nicknamed Nutcracker Man for its big teeth and strong chewing muscles, which attached to the large crest on the skull. Those features show that Paranthropus boisei likely ate tough foods like roots and nuts. But dental microwear patterns seen on P. boisei teeth are more similar to living fruit-eaters with fine striations, rather than large, deep pits seen in the teeth of living species that eat grass, tough leaves and stems, or other hard, brittle foods. While the morphology of P. boisei skull and teeth indicate it could have chewed hard or tough foods, dental microwear analysis does not demonstrate that they regularly did so, suggesting a wider, more diverse diet for P. boisei. It's possible that this species only ate hard or tough foods during times when its preferred resources were scarce, relying on them as fallback foods."[63]
"P. boisei is usually thought to descend from earlier P. aethiopicus (who inhabited the same geographic area just a few hundred thousand years before) and lived alongside several other species of early humans during its 1.1 million year existence. P. boisei belongs to just one of the many side branches of human evolution, which most scientists agree includes all Paranthropus species and did not lead to H. sapiens."[63]
"The 1975 discovery of P. boisei specimen KNM-ER 406 and H. erectus specimen KNM-ER 3733 in the same stratigraphic layer was the first example of species coexistence. This discovery cleared up a long time controversy and confirmed that more than one species of early humans lived in the same geographical area at the same time. More finds have confirmed that this species was one of the most prevalent in Eastern Africa during the time period when early members of the genus Homo were also present. This replaced the traditional view of a single human lineage by the notion of a human family tree with many branches (like most other family trees); we’ve been adding branches though discoveries of new species ever since."[63]
"KNM-ER 732 [second image down on the right], a partial cranium of a female Paranthropus boisei has many characteristic P. boisei features. Most notable is the forward placed root of the zygomatic arch, resulting in a wide flat face. This skull has a cranial capacity of 500 cubic centimeters, nearly identical to the 510 cubic centimeters of presumed male P. boisei KNM-ER 406. Yet the skull shows less robust facial features than KNM-ER 406; the face is less massive overall, and it lacks a sagittal crest. From this, scientists conclude that KNM-ER 732 represents a female of the Parathropus boisei species. This fossil provides clues as to the nature of sexual dimorphism in this early human species."[63]
"Olduvai Hominid 5 (OH 5 [first image on the left]) is easily the most famous of the early human fossils found at Olduvai Gorge. It is a nearly complete cranium of an adult male P. boisei. Originally named Zinjanthropus boisei, its classification was changed to Australopithecus boisei and later Paranthropus boisei, placing it in the same genus as the southern African species."[64]
"The South African species Paranthropus robustus provided the original standard for the robust cranial form: a large sagittal crest on the top of the skull, a flat face formed by large zygomatic arches positioned far forward and megadont cheek teeth. But with the discovery of "Zinj" in eastern Africa, a new level of robusticity was defined, sometimes called "hyper-robust". Notice the wide zygomatic arches which project forward of the nasal opening and form the dished-shape face typical of Paranthropus boisei. The outward flaring of these bony arches from the side of the head provided space for large temporalis muscles. These were the huge chewing muscles that passed from the lower jaw to the large sagittal crest atop the skull. In some cases, the megadont cheek teeth of Paranthropus boisei were four times the size of our own."[64]
The "Zinj" fossil is about 1.8 million years old.[64]
Endocranial volume ranges 430–545 cm3, mean 492, n = 8, 1.41–1.93 Ma.[41]
Australopithecus sediba
"A 2 million-year-old ancestor of man had a mixture of ape and human-like features that allowed it to hike vast distances on two legs with as much ease as it could scurry up trees ... Discovered in cave near Johannesburg in 2008, the fossils of a species named Australopithecus sediba ... Standing about 1.3 meters (4 ft) tall, sediba had a narrow rib cage similar to apes but a flexible spine more similar to that of a human. Its long arms and powerful torso helped in climbing ... Sediba's small heel resembled a chimpanzee's and it walked with an inward rotation of the knee and hip on slightly twisted feet with a flat-footed gait that would have helped it cover ground".[65]
"It is the perfect compromise of something that has the need to walk on the ground efficiently for long distances. At the same time, it is a very capable climber".[66]
"The teeth also show a mix of human and primitive features, and provide new evidence that A. sediba is closely related to early humans ... It and an older South African species, A. africanus, appear more closely related to early humans than other australopithecines like the famous "Lucy" are".[67]
"Its scapula or shoulder blade is most similar in shape to that of orangutans, the most arboreal or tree-dwelling of all the apes ... This suggests climbing was still an important part of its behavior and ecology. ... They're still capable of very powerful grips, which is what you'd need if you were climbing or suspended under a branch ... It looks like a hand good for both tools and climbing."[68]
"The extinct species' teeth are a combination of primitive and humanlike traits. Their features suggest Au. sediba was a close relative of another southern African australopith known as Australopithecus africanus."[69]
"Au. sediba stood a little more than 4 feet high (1.2 meters). Analysis of its spine revealed it had a humanlike curvature of the lower back. However, its lower back was longer and more flexible than modern humans, and more like primitive, extinct members of Homo."[69]
"The broad thorax we have is unique to humans — the only mammal that doesn't have narrowing at the shoulders is humans ... We can lift our thorax to breathe, change the capacity for respiration, which is one of the main reasons humans are good long-distance runners. Chimpanzees don't have that."[70]
Endocranial volume is 420 cm3, n = 1, 1.95 Ma.[41]
Calabrian
"The [Calabrian] GSSP occurs at the base of the marine claystone conformably overlying sapropelic bed ‘e’ within Segment B in the Vrica section. This lithological level represents the primary marker for the recognition of the boundary, and is assigned an astronomical age of 1.80 Ma on the basis of sapropel calibration."[71]
Paranthropus robustus
"Paranthropus robustus is an example of a robust australopithecine; they had very large megadont cheek teeth with thick enamel and focused their chewing in the back of the jaw. Large zygomatic arches (cheek bones) allowed the passage of large chewing muscles to the jaw and gave P. robustus individuals their characteristically wide, dish-shaped face. A large sagittal crest provided a large area to anchor these chewing muscles to the skull. These adaptations provided P. robustus with the ability of grinding down tough, fibrous foods. It is now known that ‘robust’ refers solely to tooth and face size, not to the body size of P. robustus."[72]
"When scientist Robert Broom bought a fossil jaw fragment and molar in 1938 that didn’t look anything like some of the Au. africanus fossils he’d found during his career, he knew he was on to something different. After exploring Kromdraai, South Africa, the site where the curious fossils came from, Broom collected many more bones and teeth that together convinced him he had a new species which he named Paranthropus robustus (Paranthropus meaning “beside man”)."[72]
"Robust species like Paranthropus robustus had large teeth as well as a ridge on top of the skull, where strong chewing muscles attached. These features allowed individuals to crush and grind hard foods such as nuts, seeds, roots, and tubers in the back of the jaw; however, P. robustus didn’t just eat tough foods. This early human species may have been more of a dietary generalist, also eating variety of other foods such as soft fruits and possibly young leaves, insects, and meat."[72]
"While scientists have not found any stone tools associated with Paranthropus robustus fossils, experiments and microscopic studies of bone fragments show that these early humans probably used bones as tools to dig in termite mounds. Through repeated use, the ends of these tools became rounded and polished. Termites are rich in protein, and would have been a nutritious source of food for Paranthropus."[72]
"From 1940s through 1970s, lots of debate whether this species represented the males of Au. africanus. Eventually, scientists recognized that the 'robust' forms were different enough to be in their own species, originally called Australopithecus robustus. Later, the three robust species (aethiopicus, boisei, and robustus) were recognized as being different enough from the other australopithecines - and similar enough to each other - to be placed into a separate genus, Paranthropus."[72]
"SK 46 [image on the right] preserves the left half of the braincase and the nearly complete palate of Paranthropus robustus. The cheek teeth are nearly perfectly preserved; although the incisors and one canine tooth have been lost, their alveoli (the bony pits that hold the tooth roots) remain. Because these alveoli are still preserved, paleoanthropologists are able to reconstruct the size of the cheek teeth (molars and premolars) relative to the incisors and canines. This information can give clues about the dietary habits of this early human species. The large size of the cheek teeth relative to the front teeth suggests that Paranthropus robustus had a diet dominated by coarse vegetable matter. The large teeth provided a large occlusal area (the area where the upper and lower teeth contact each other during chewing). Think about a cow, or a horse, both of which eat large amounts of grass and other coarse plant foods. These animals have large cheek teeth and large chewing surfaces. By this kind of analogy and by direct study of microscopic wear on the tooth surfaces, scientists have determined that the large cheek teeth of robust australopiths were used for grinding tough, fibrous foods."[72]
"The preserved portion of the cranium has other features typical of P. robustus, including large zygomatic arches and a prominent sagittal crest. These features are associated with large chewing muscles used in grinding tough foods."[72]
Paranthropus robustus is between 1.8 and 1.5 million years old.[72]
"Discovered in the debris pile at a cave site commercially mined for calcite, this skull [second down on the right] represented until recently the best preserved skull of any member of this species. SK 48 is the cranium of an adult robust australopith. Most of the skull (minus the lower jaw) is preserved and is relatively undistorted by the fossilization process, although some damage did occur when the specimen was dynamited out of the limestone deposits by miners. Preserved in the cranium were the right canine tooth and first premolar and all three left molars, indicating the individual was an adult at death."[72]
"The flat face, caused by the anterior (frontward) position of the cheekbones, and the extremely large molars and premolars are typical traits of robust australopithecines. These traits are linked to the development of a chewing complex designed to process tough, fibrous foods. The anterior position of the cheekbones created more space for large chewing muscles to pass behind the zygomatic arch. The large molars and premolars provided large surfaces for grinding tough foods."[72]
"The fossil was originally described by Robert Broom of the Transvaal Museum of South Africa. He inferred that the individual was a female based on the presence of a very small sagittal crest."[72]
Endocranial volume ranges 465–500 cm3, mean 486, n = 3, 1.6–2.36 Ma.[41]
Homo rudolfensis
"There is only one really good fossil of this Homo rudolfensis: KNM-ER 1470, from Koobi Fora in the Lake Turkana basin, Kenya. It has one really critical feature: a braincase size of 775 cubic centimeters, which is considerably above the upper end of H. habilis braincase size. At least one other braincase from the same region also shows such a large cranial capacity."[73]
"Originally considered to be H. habilis, the ways in which H. rudolfensis differs is in its larger braincase, longer face, and larger molar and premolar teeth. Due to the last two features, though, some scientists still wonder whether this species might better be considered an Australopithecus, although one with a large brain!"[73]
"Russian scientist V.P. Alexeev named the species in 1986 after Richard Leakey’s team uncovered Homo rudolfensis fossils near the shores of Lake Rudolf (now known as Lake Turkana) in 1972. Alexeev originally named the species Pithecanthropus rudolfensis, but the genus name Pithecanthropus was later replaced by Homo."[73]
"Homo rudolfensis had large and wider molars compared to Homo habilis. While their teeth were only slightly smaller than those seen in robust australopithecines, H. rudolfensis didn’t have the heavily-built jaw and strong jaw muscle attachments seen in robust early humans. These anatomical differences likely indicate different diets between H. rudolfensis and earlier australopith species capable of more powerful chewing."[73]
"Like other early Homo species, Homo rudolfensis may have used stone tools [to] process their food. However, because more than one species of early human lived at the time tool manufacture and use originated, it’s hard for scientists to be certain which species is responsible for the making and using the first stone tools. There are currently no stone tools found in the same layers as the H. rudolfensis fossils, but there are stone tools existing in the same time period that H. rudolfensis lived."[73]
Most "scientists recognize four species that lived in the Turkana Basin, northern Kenya, sometime between 2.0 and 1.5 million years ago: Homo rudolfensis, Homo habilis, Homo erectus, and Paranthropus boisei."[73]
"Over several weeks following its discovery, scientists Meave Leakey and Bernard Wood reconstructed KNM-ER 1470’s skull from more than 150 fragments, revealing a large cranium with a long, wide, flat face. While tooth roots show that this early human had large teeth, the skull lacked the massive jaw muscle features characteristic of robust australopithecines."[73]
The fragments were discovered by Bernard Ngeneo.[73]
Homo antecessor
"Homo antecessor, an early member of our genus from Europe, lived 1.2 million years ago."[11]
On the right is one of five skulls unearthed in Europe. This particular one is from the Burgos dated to about 800,000 b2k.
"Stone artifacts from the Bose basin, South China, are associated with tektites dated to 803,000 ± 3000 years ago and represent the oldest known large cutting tools (LCTs) in East Asia."[74]
- ↑ Bennmorland (15 May 2005). anthropology. San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2013-01-27.
- ↑ 2.0 2.1 Dan Polansky (3 July 2008). anthropology, In: Wiktionary. San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2013-01-27.
- ↑ Katerina Harvati (14 November 2018). Neanderthals Weren't the Violent Brutes We Thought, New Research Finds. Retrieved 23 November 2018.
- ↑ Judith Beier, Nils Anthes, Joachim Wahl & Katerina Harvati (14 November 2018). "Similar cranial trauma prevalence among Neanderthals and Upper Palaeolithic modern humans". Nature. 18 (41586): 696. doi:10.1038/s41586-018-0696-8. Retrieved 23 November 2018.
- ↑ Romanophile (6 May 2011). paleanthropology. San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2015-06-07.
- ↑ Tormod (17 January 2005). great ape. San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2015-06-07.
- ↑ 67.220.1.141 (16 December 2014). great ape. San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2015-06-07.
- ↑ SemperBlotto (17 October 2014). hominoid. San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2015-06-07.
- ↑ Tycho~specieswiki (19 June 2005). Paranthropus. San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2015-06-08.
- ↑ LunceFordPrefect (13 September 2006). Paranthropus. San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2015-06-08.
- ↑ 11.0 11.1 11.2 11.3 Jennifer Viegas (10 May 2013). Prehistoric Moms Had Their Hands Full: Photos. Discovery.com. Retrieved 2014-12-07.
- ↑ James S. Aber (2008). GLACIATIONS THROUGHOUT EARTH HISTORY. Emporia, Kansas USA: Emporia State University. Retrieved 2014-11-06.
- ↑ 13.0 13.1 13.2 13.3 13.4 13.5 13.6 Louis-Jean Boë, Frédéric Berthommier, Thierry Legou, Guillaume Captier, Caralyn Kemp, Thomas R. Sawallis, Yannick Becker, Arnaud Rey, Joël Fagot (11 January 2017). "Evidence of a Vocalic Proto-System in the Baboon (Papio papio) Suggests Pre-Hominin Speech Precursors". PLOS One. 12 (1): e0169321. doi:10.1371/journal.pone.0169321. Retrieved 2017-01-19.
- ↑ 14.00 14.01 14.02 14.03 14.04 14.05 14.06 14.07 14.08 14.09 14.10 14.11 14.12 14.13 Amina Khan (11 January 2017). Vowel sounds made by baboons show that the roots of human speech may go back 25 million years. Los Angeles, California USA: Los Angeles Times. Retrieved 2017-01-19.
- ↑ 15.0 15.1 15.2 Tanya Lewis (May 15, 2013). Oldest Fossils Reveal When Apes & Monkeys First Diverged. Yahoo! News. Retrieved 2013-05-28.
- ↑ Nancy Stevens (May 15, 2013). Oldest Fossils Reveal When Apes & Monkeys First Diverged. Yahoo! News. Retrieved 2013-05-28.
- ↑ 17.0 17.1 Nancy J. Stevens (16 May 2013). 25-Million-Year-Old Primate Fossils Unearthed in Tanzania. Science News. Retrieved 2015-06-08.
- ↑ J. Agustí, A. Sanz de Siriaa, M. Garcés (2003). "Explaining the end of the hominoid experiment in Europe" (PDF). Journal of Human Evolution. 45: 145–153. doi:10.1016/S0047-2484(03)00091-5. Retrieved 2017-08-19.
- ↑ 19.0 19.1 Christmas, Jane (2005-11-07). "Giant Ape lived alongside humans". McMaster University. Archived from the original on 2012-02-06. Retrieved 2007-12-06.
- ↑ Ciochon, R.; et al. (1996). "Dated Co-Occurrence of Homo erectus and Gigantopithecus from Tham Khuyen Cave, Vietnam" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 93 (7): 3016–3020. doi:10.1073/pnas.93.7.3016. PMC 39753. PMID 8610161. Retrieved 2007-12-06.
- ↑ Sofwan, N.; et al. (2016). "Primata Besar di Jawa: Spesimen Baru Gigantopithecus dari Semedo/Giant Primate of Java: A new Gigantopithecus specimen from Semedo" (PDF). Berkala Arkeologi. 36 (2): 141–160. Retrieved 2017-12-06.
- ↑ Ciochon, R. (1991). "The ape that was – Asian fossils reveal humanity's giant cousin". Natural History. 100: 54–62. ISSN 0028-0712. Archived from the original on May 25, 2015. Retrieved 2007-12-06.
- ↑ Pettifor, Eric (2000) [1995]. "From the Teeth of the Dragon: Gigantopithecus blacki". Selected Readings in Physical Anthropology. Kendall/Hunt Publishing Company. pp. 143–149. ISBN 0-7872-7155-1. Retrieved 2008-01-30.
- ↑ de Vos, J., 1993. Een portret van Pleistocene zoogdieren: Op zoek naar de reuzenaap (Gigantopithecus) in Vietnam. Cranium, 10(2), pp.123-127.
- ↑ Relethford, J. (2003). The Human Species: An Introduction to Biological Anthropology. McGraw-Hill. ISBN 978-0-7674-3022-7.
- ↑ Dennel, R. (2009). The Palaeolithic Settlement of Asia. Cambridge University Press. ISBN 978-0-521-84866-4.
- ↑ Singh, R. P.; Islam, Z. (2012). Environmental Studies. Concept Publishing Company Pvt. Ltd. ISBN 978-81-8069-774-6.
- ↑ Zhang, Y. and Harrison, T., 2017. Gigantopithecus blacki: a giant ape from the Pleistocene of Asia revisited. American journal of physical anthropology, 162(S63), pp.153-177. doi: 10.1002/ajpa.23150.
- ↑ 29.0 29.1 F.J. Hilgen, S. Iaccarino, W. Krijgsman, G. Villa, C.G. Langereis, and W.J. Zachariasse (2000). "The Global Boundary Stratotype Section and Point (GSSP) of the Messinian Stage (uppermost Miocene)" (PDF). Episodes. 23 (3): 172–178. Retrieved 2017-08-20.
- ↑ Alison A. Elgart (June 2010). "Dental wear, wear rate, and dental disease in the African apes". American Journal of Primatology. 72 (6): 481–491. doi:10.1002/ajp.20797. Retrieved 2017-08-19.
- ↑ 31.0 31.1 31.2 Michael Brunet (26 May 2015). Sahelanthropus tchadensis. Washington, DC USA: Smithsonian Institution. Retrieved 2015-05-31.
- ↑ 32.0 32.1 32.2 Brigitte Senut and Martin Pickford (26 May 2015). Orrorin tugenensis. Washington, DC USA: Smithsonian Institution. Retrieved 2015-05-31.
- ↑ 33.0 33.1 33.2 Yohannes Haile-Selassie (26 May 2015). Ardipithecus kadabba. Washington, DC USA: Smithsonian Institution. Retrieved 2015-05-30.
- ↑ John A. Van Couvering, Davide Castradori, Maria Bianca Cita, Frederik J. Hilgen, and Domenico Rio (September 2000). "The base of the Zanclean Stage and of the Pliocene Series" (PDF). Episodes. 23 (3): 179–87. Retrieved 2015-01-23. line feed character in
|title=
at position 42 (help) - ↑ Jay Matternes (10 May 2013). Prehistoric Moms Had Their Hands Full: Photos. Discovery.com. Retrieved 2014-12-07.
- ↑ Ian Tattersall (January 2000). "Once we were not alone". Scientific American. 282 (1): 56–62. Retrieved 2017-08-18.
- ↑ 37.0 37.1 37.2 37.3 37.4 Meave Leakey (3 June 2015). Australopithecus anamensis. Washinton, DC USA: Smithsonian Institution. Retrieved 2015-06-03.
- ↑ Kamoya Kimeu (3 June 2015). Australopithecus anamensis. Washinton, DC USA: Smithsonian Institution. Retrieved 2015-06-03.
- ↑ William A. Haviland, Harald E. L. Prins,Dana Walrath,Bunny McBride. Evolution And Prehistory: The Human Challenge.
- ↑ 40.0 40.1 Charles Choi (October 25, 2012). Early Human 'Lucy' Swung from the Trees. LiveScience.com. Retrieved on 2012-10-28.
- ↑ 41.0 41.1 41.2 41.3 41.4 41.5 41.6 41.7 Amélie Beaudet, Ronald J. Clarke, Edwin J. de Jager, Laurent Bruxelles, Kristian J. Carlson, Robin Crompton, Frikkiede Beer, Jelle Dhaene, Jason L. Heaton, Kudakwashe Jakata, Tea Jashashvili, Kathleen Kuman, Juliet McClymont, Travis R. Pickering, Dominic Stratford. (January 2019). "The endocast of StW 573 ("Little Foot") and hominin brain evolution". Journal of Human Evolution. 126 (9): 112–123. doi:10.1016/j.jhevol.2018.11.009. Retrieved 9 January 2019.
- ↑ Zeresenay Alemseged (October 25, 2012). Early Human 'Lucy' Swung from the Trees. LiveScience.com. Retrieved 2012-10-28.
- ↑ Donald Johanson and Maurice Taieb (26 May 2015). At home in two worlds. Washington, DC USA: Smithsonian Institution. Retrieved 2015-05-31.
- ↑ 44.0 44.1 44.2 44.3 44.4 44.5 44.6 44.7 44.8 Bruce Bower (January 10, 2019). ‘Little Foot’ skeleton reveals a brain much like a chimp’s But the ancient hominid’s inner ear shows a mix of humanlike and apelike features. Science News. Retrieved 9 January 2019.
- ↑ 45.0 45.1 45.2 Amélie Beaudet (January 10, 2019). ‘Little Foot’ skeleton reveals a brain much like a chimp’s But the ancient hominid’s inner ear shows a mix of humanlike and apelike features. Science News. Retrieved 9 January 2019.
- ↑ Dean Falk (January 10, 2019). ‘Little Foot’ skeleton reveals a brain much like a chimp’s But the ancient hominid’s inner ear shows a mix of humanlike and apelike features. Science News. Retrieved 9 January 2019.
- ↑ D. Castradori, D. Rio, F. J. Hilgen, and L. J. Lourens (June =1998). "The Global Standard Stratotype-section and Point (GSSP) of the Piacenzian Stage (Middle Pliocene)" (PDF). Episodes. 21 (2): 88–93. Retrieved 2015-01-23. Check date values in:
|date=
(help) - ↑ 48.0 48.1 48.2 48.3 Lisiecki, L.E., 2005, Ages of MIS boundaries. LR04 Benthic Stack Boston University, Boston, MA
- ↑ 20.133.0.14 (16 June 2005). Stone Age. San Francisco, California: Wikimedia Foundation, Inc. Retrieved 2017-08-18.
- ↑ Malcolm Ritter (27 May 2015). Study: Ethiopian fossils indicate new forerunner of humans. Washington, DC USA: The Washington Post. Retrieved 2015-05-28.
- ↑ 51.0 51.1 Sonia Harmand, Jason E. Lewis, Craig S. Feibel, Christopher J. Lepre, Sandrine Prat, Arnaud Lenoble, Xavier Boës, Rhonda L. Quinn, Michel Brenet, Adrian Arroyo, Nicholas Taylor, Sophie Clément, Guillaume Daver, Jean-Philip Brugal, Louise Leakey, Richard A. Mortlock, James D. Wright, Sammy Lokorodi, Christopher Kirwa, Dennis V. Kent & Hélène Roche (21 May 2015). "3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya". Nature. 521 (7552): 310–315. doi:10.1038/nature14464. Retrieved 2017-08-18.
- ↑ 52.0 52.1 52.2 52.3 52.4 Raymond Dart (3 June 2015). Australopithecus africanus. Washington, DC USA: Smithsonian Institution. Retrieved 2015-06-04.
- ↑ 53.00 53.01 53.02 53.03 53.04 53.05 53.06 53.07 53.08 53.09 Alan Walker and Richard Leakey (5 June 2015). Paranthropus aethiopicus. Washington DC, USA: Smithsonian Institution. Retrieved 2015-06-05.
- ↑ Willi Dansgaard (2005). The Department of Geophysics of The Niels Bohr Institute for Astronomy, Physics and Geophysics at The University of Copenhagen, Denmark, ed. Frozen Annals Greenland Ice Cap Research. Copenhagen, Denmark: Niels Bohr Institute. p. 123. ISBN 87-990078-0-0. Retrieved 2014-10-05.
- ↑ Philip L. Gibbard and Martin J. Head (September 2010). "The newly-ratified definition of the Quaternary System/Period and redefinition of the Pleistocene Series/Epoch, and comparison of proposals advanced prior to formal ratification" (PDF). Episodes. 33 (3): 152–8. Retrieved 2015-01-20.
- ↑ 56.0 56.1 56.2 56.3 56.4 Berhane Asfaw and Tim White (4 June 2015). Australopithecus garhi. Washington, DC USA: Smithsonian Institution. Retrieved 2015-06-04.
- ↑ Sileshi Semaw (December 2000). "The World's Oldest Stone Artefacts from Gona, Ethiopia: Their Implications for Understanding Stone Technology and Patterns of Human Evolution Between 2·6–1·5 Million Years Ago". Journal of Archaeological Science. 27 (12): 1197–1214. doi:10.1006/jasc.1999.0592. Retrieved 2017-08-18.
- ↑ Charles Choi (April 17, 2013). The Real 'Hobbit' Had Larger Brain Than Thought. Yahoo! News. Retrieved 2013-04-23.
- ↑ 59.0 59.1 59.2 59.3 Jennifer Viegas (21 July 2015). First Humans Out of Africa Eere Small, Scrappy. Discovery News. Retrieved 2015-07-22.
- ↑ 60.0 60.1 60.2 60.3 60.4 Mark Collard (21 July 2015). First Humans Out of Africa Eere Small, Scrappy. Discovery News. Retrieved 2015-07-22.
- ↑ Sally McBrearty & Nina G. Jablonski (1 September 2005). "First fossil chimpanzee". Nature. 437 (7055): 105–108. Bibcode:2005Natur.437..105M. doi:10.1038/nature04008. Retrieved 2017-08-18.
- ↑ Jill D. Pruetz and Paco Bertolani (6 March =2007). "Savanna Chimpanzees, Pan troglodytes verus, Hunt with Tools". Current Biology. 17 (5): 412–417. doi:10.1016/j.cub.2006.12.042. Retrieved 2017-08-18. Check date values in:
|date=
(help) - ↑ 63.0 63.1 63.2 63.3 63.4 63.5 63.6 63.7 Richard Leakey and H. Mutua (3 June 2015). Paranthropus boisei. Washington, DC USA: Smithsonian Institution. Retrieved 2015-06-06.
- ↑ 64.0 64.1 64.2 Mary Leakey (3 June 2015). Paranthropus boisei. Washington, DC USA: Smithsonian Institution. Retrieved 2015-06-06.
- ↑ Jon Herskovitz (April 12, 2013). Two million-year-old creature had mix of ape, human traits. Yahoo! News. Retrieved 2013-04-23.
- ↑ Lee R. Berger (April 12, 2013). Two million-year-old creature had mix of ape, human traits. Yahoo! News. Retrieved 2013-04-23.
- ↑ Malcolm Ritter (April 11, 2013). Ancient creature mixed human, apelike traits. Yahoo! News. Retrieved 2013-04-23.
- ↑ Steven Churchill (April 11, 2013). Humanity's Closest Ancestor Was Pigeon-Toed, Research Reveals. Yahoo! News. Retrieved 2013-04-23.
- ↑ 69.0 69.1 Charles Choi (April 11, 2013). Humanity's Closest Ancestor Was Pigeon-Toed, Research Reveals. Yahoo! News. Retrieved 2013-04-23.
- ↑ Lee R. Berger (April 11, 2013). Humanity's Closest Ancestor Was Pigeon-Toed, Research Reveals. Yahoo! News. Retrieved 2013-04-23.
- ↑ Maria Bianca Cita, Philip L. Gibbard, Martin J. Head, and the ICS Subcommission on Quaternary Stratigraphy (September 2012). "Formal ratification of the GSSP for the base of the Calabrian Stage (second stage of the Pleistocene Series, Quaternary System)" (PDF). Episodes. 35 (3): 388–97. Retrieved 2015-01-18.
- ↑ 72.00 72.01 72.02 72.03 72.04 72.05 72.06 72.07 72.08 72.09 72.10 Robert Broom (3 June 2015). Paranthropus robustus. Washington, DC USA: Smithsonian Institution. Retrieved 2015-06-06.
- ↑ 73.0 73.1 73.2 73.3 73.4 73.5 73.6 73.7 V.P. Alexeev (26 May 2015). Homo rudolfensis. Smithsonian Institution. Retrieved 2015-05-31.
- ↑ Hou Yamei, Richard Potts, Yuan Baoyin, Guo Zhengtang, Alan Deino, Wang Wei, Jennifer Clark, Xie Guangmao, Huang Weiwen (3 March 2000). "Mid-Pleistocene Acheulean-like stone technology of the Bose basin, South China". Science. 287 (5458): 1622–1626. doi:10.1126/science.287.5458.1622. Retrieved 2017-08-18.