COVID-19 laboratory findings
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:
Synonyms and keywords:
Overview
Other Laboratory Findings
Leukocytosis
- Leukocytosis is seen in 11.4% of patients with severe COVID-19 infection compared to 4.8% of patients with non-severe infection.[1][2]
- In patients with COVID-19 infection, leukocytosis may be an indication of a bacterial infection or superinfection.[2]
Increase in C-reactive protein (CRP)
- Increase in CRP is seen in 81.5% of patients with severe COVID-19 infection compared to 56.4% of patients with non-severe infection.[1][2]
- CRP is an acute phase reactant that increases in conditions with inflammation.[3]
- In patients with COVID-19 infection, increase in CRP may be an indication of severe viral infection or sepsis and viremia.[2]
Increase in procalcitonin
- Increase in procalcitonin is seen in 13.7% of patients with severe COVID-19 infection compared to 3.7% of patients with non-severe infection.[1][2]
- In sepsis, the activation and adherence of monocytes increase procalcitonin, therefore procalcitonin in a biomarker for sepsis and septic shock.[4]
- In patients with COVID-19 infection, increase in procalcitonin may be an indication of bacterial infection or superinfection.[2]
Increase in ferritin
- There have been different reports regarding the association of increase in ferritin with death in COVID-19 infection; for example, there has been a report that increase in ferritin is associated with acute respiratory distress syndrome (ARDS) but not death[5], while another one reports an association between increase in ferritin and death in COVID-19 infection[6].
Increase in aspartate aminotransferase (AST)
- Increase in AST is seen in 39.4% of patients with severe COVID-19 infection compared to 18.2% of patients with non-severe infection.[1][2]
- In patients with COVID-19 infection, increase in aminotransferases may indicate injury to the liver or multi-system damage.[2]
Increase in alanine aminotransferase (ALT)
- Increase in ALT is seen in 28.1% of patients with severe COVID-19 infection compared to 19.8% of patients with non-severe infection.[1][2]
- ALT is produced by liver cells and is increased in liver conditions.[3]
- In patients with COVID-19 infection, increase in aminotransferases may indicate injury to the liver or multi-system damage.[2]
Increase in lactate dehydrogenase (LDH)
- Increase in LDH is seen in 58.1% of patients with severe COVID-19 infection compared to 37.2% of patients with non-severe infection.[1][2]
- LDH is expressed in almost all cells and an increase in LDH could be seen in damage to any of the cell types.[3]
- In patients with COVID-19 infection, increase in LDH may indicate injury to the lungs or multi-system damage.[2]
Increase in monocyte volume distribution width (MDW)
- MDW was found to be increased in all patients with COVID-19 infection, particularly in those with the worst conditions.[2]
Increase in total bilirubin
- Increase in total bilirubin is seen in 13.3% of patients with severe COVID-19 infection compared to 9.9% of patients with non-severe infection.[1][2]
- Bilirubin is produced by liver cells and increases in liver and biliary conditions.[3]
- In patients with COVID-19 infection, increase in total bilirubin may indicate injury to the liver.[2]
Increase in creatinine
- Increase in creatinine is seen in 4.3% of patients with severe COVID-19 infection compared to 1% of patients with non-severe infection.[1][2]
- Creatinin is produced in the liver and excreted by the kidneys; creatinine increases when there is decrease in glomerular filtration rate.[3]
- In patients with COVID-19 infection, increase in creatinine may indicate injury to the kidneys.[2]
Increase in cardiac troponins
- In myocardial infarction and acute coronary syndrome are used for diagnosis.[3]
- In patients with COVID-19 infection, increase in cardiac troponins may indicate cardiac injury.[2]
Decrease in albumin
- Albumin may be decreased in many conditions such as sepsis, renal disease or malnutrition.[3]
- In patients with COVID-19 infection, decrease in albumin may indicate liver function abnormality.[2]
Increase in interleukin-6 (IL-6)
Historical Perspective
- Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus called SARS-CoV-2, which caused a respiratory illness outbreak that was first detected in Wuhan, China.[7][8]
- On January 30, 2020, the outbreak was declared a Public Health Emergency of International Concern.
- On March 12, 2020, the COVID-19 outbreak was declared a pandemic by the World Health Organization (WHO).
Classification
There is no established system for the classification of [disease name].
OR
[Disease name] may be classified according to [classification method] into [number] subtypes/groups: [group1], [group2], [group3], and [group4].
OR
[Disease name] may be classified into [large number > 6] subtypes based on [classification method 1], [classification method 2], and [classification method 3]. [Disease name] may be classified into several subtypes based on [classification method 1], [classification method 2], and [classification method 3].
OR
Based on the duration of symptoms, [disease name] may be classified as either acute or chronic.
OR
If the staging system involves specific and characteristic findings and features: According to the [staging system + reference], there are [number] stages of [malignancy name] based on the [finding1], [finding2], and [finding3]. Each stage is assigned a [letter/number1] and a [letter/number2] that designate the [feature1] and [feature2].
OR
The staging of [malignancy name] is based on the [staging system].
OR
There is no established system for the staging of [malignancy name].
Pathophysiology
The exact pathogenesis of [disease name] is not fully understood.
OR
It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
OR
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
OR
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
OR
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
OR
The progression to [disease name] usually involves the [molecular pathway].
OR
The pathophysiology of [disease/malignancy] depends on the histological subtype.
Causes
Disease name] may be caused by [cause1], [cause2], or [cause3].
OR
Common causes of [disease] include [cause1], [cause2], and [cause3].
OR
The most common cause of [disease name] is [cause 1]. Less common causes of [disease name] include [cause 2], [cause 3], and [cause 4].
OR
The cause of [disease name] has not been identified. To review risk factors for the development of [disease name], click here.
Differentiating ((Page name)) from other Diseases
[Disease name] must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].
OR
[Disease name] must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].
Epidemiology and Demographics
The incidence/prevalence of [disease name] is approximately [number range] per 100,000 individuals worldwide.
OR
In [year], the incidence/prevalence of [disease name] was estimated to be [number range] cases per 100,000 individuals worldwide.
OR
In [year], the incidence of [disease name] is approximately [number range] per 100,000 individuals with a case-fatality rate of [number range]%.
Patients of all age groups may develop [disease name].
OR
The incidence of [disease name] increases with age; the median age at diagnosis is [#] years.
OR
[Disease name] commonly affects individuals younger than/older than [number of years] years of age.
OR
[Chronic disease name] is usually first diagnosed among [age group].
OR
[Acute disease name] commonly affects [age group].
There is no racial predilection to [disease name].
OR
[Disease name] usually affects individuals of the [race 1] race. [Race 2] individuals are less likely to develop [disease name].
[Disease name] affects men and women equally.
OR
[Gender 1] are more commonly affected by [disease name] than [gender 2]. The [gender 1] to [gender 2] ratio is approximately [number > 1] to 1.
The majority of [disease name] cases are reported in [geographical region].
OR
[Disease name] is a common/rare disease that tends to affect [patient population 1] and [patient population 2].
Risk Factors
There are no established risk factors for [disease name].
OR
The most potent risk factor in the development of [disease name] is [risk factor 1]. Other risk factors include [risk factor 2], [risk factor 3], and [risk factor 4].
OR
Common risk factors in the development of [disease name] include [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].
OR
Common risk factors in the development of [disease name] may be occupational, environmental, genetic, and viral.
Screening
There is insufficient evidence to recommend routine screening for [disease/malignancy].
OR
According to the [guideline name], screening for [disease name] is not recommended.
OR
According to the [guideline name], screening for [disease name] by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].
Natural History, Complications, and Prognosis
If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
OR
Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
OR
Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with [disease name] is approximately [#]%.
Diagnosis
Diagnostic Study of Choice
The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].
OR
The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].
OR
The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].
OR
There are no established criteria for the diagnosis of [disease name].
History and Symptoms
The majority of patients with [disease name] are asymptomatic.
OR
The hallmark of [disease name] is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of [disease name]. The most common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of [disease name] include [symptom 1], [symptom 2], and [symptom 3].
Physical Examination
Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].
OR
Common physical examination findings of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
The presence of [finding(s)] on physical examination is diagnostic of [disease name].
OR
The presence of [finding(s)] on physical examination is highly suggestive of [disease name].
Laboratory Findings
An elevated/reduced concentration of serum/blood/urinary/CSF/other [lab test] is diagnostic of [disease name].
OR
Laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].
OR
[Test] is usually normal among patients with [disease name].
OR
Some patients with [disease name] may have elevated/reduced concentration of [test], which is usually suggestive of [progression/complication].
OR
There are no diagnostic laboratory findings associated with [disease name].
Electrocardiogram
There are no ECG findings associated with [disease name].
OR
An ECG may be helpful in the diagnosis of [disease name]. Findings on an ECG suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
X-ray
There are no x-ray findings associated with [disease name].
OR
An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Echocardiography or Ultrasound
There are no echocardiography/ultrasound findings associated with [disease name].
OR
Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
CT scan
There are no CT scan findings associated with [disease name].
OR
[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
MRI
There are no MRI findings associated with [disease name].
OR
[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].
Other Imaging Findings
There are no other imaging findings associated with [disease name].
OR
[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
Other Diagnostic Studies
There are no other diagnostic studies associated with [disease name].
OR
[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].
OR
Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].
Treatment
Medical Therapy
There is no treatment for [disease name]; the mainstay of therapy is supportive care.
OR
Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].
OR
The majority of cases of [disease name] are self-limited and require only supportive care.
OR
[Disease name] is a medical emergency and requires prompt treatment.
OR
The mainstay of treatment for [disease name] is [therapy].
OR The optimal therapy for [malignancy name] depends on the stage at diagnosis.
OR
[Therapy] is recommended among all patients who develop [disease name].
OR
Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].
OR
Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].
OR
Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].
OR
Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].
Surgery
Surgical intervention is not recommended for the management of [disease name].
OR
Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]
OR
The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].
OR
The feasibility of surgery depends on the stage of [malignancy] at diagnosis.
OR
Surgery is the mainstay of treatment for [disease or malignancy].
Primary Prevention
There are no established measures for the primary prevention of [disease name].
OR
There are no available vaccines against [disease name].
OR
Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
OR
[Vaccine name] vaccine is recommended for [patient population] to prevent [disease name]. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].
Secondary Prevention
There are no established measures for the secondary prevention of [disease name].
OR
Effective measures for the secondary prevention of [disease name] include [strategy 1], [strategy 2], and [strategy 3].
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Invalid
<ref>
tag; no text was provided for refs namedpmid32109013
- ↑ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 Lippi G, Plebani M (2020). "The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks". Clin Chem Lab Med. 58 (7): 1063–1069. doi:10.1515/cclm-2020-0240. PMID 32191623 Check
|pmid=
value (help). - ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Frater JL, Zini G, d'Onofrio G, Rogers HJ (2020). "COVID-19 and the clinical hematology laboratory". Int J Lab Hematol. 42 Suppl 1: 11–18. doi:10.1111/ijlh.13229. PMC 7264622 Check
|pmc=
value (help). PMID 32311826 Check|pmid=
value (help). - ↑ Meisner M (2014). "Update on procalcitonin measurements". Ann Lab Med. 34 (4): 263–73. doi:10.3343/alm.2014.34.4.263. PMC 4071182. PMID 24982830.
- ↑ 5.0 5.1 Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S; et al. (2020). "Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China". JAMA Intern Med. doi:10.1001/jamainternmed.2020.0994. PMC 7070509 Check
|pmc=
value (help). PMID 32167524 Check|pmid=
value (help). - ↑ Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z; et al. (2020). "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study". Lancet. 395 (10229): 1054–1062. doi:10.1016/S0140-6736(20)30566-3. PMC 7270627 Check
|pmc=
value (help). PMID 32171076 Check|pmid=
value (help). - ↑ https://www.cdc.gov/coronavirus/2019-ncov/about/index.html. Missing or empty
|title=
(help) - ↑ Lu, Jian; Cui, Jie; Qian, Zhaohui; Wang, Yirong; Zhang, Hong; Duan, Yuange; Wu, Xinkai; Yao, Xinmin; Song, Yuhe; Li, Xiang; Wu, Changcheng; Tang, Xiaolu (2020). "On the origin and continuing evolution of SARS-CoV-2". National Science Review. doi:10.1093/nsr/nwaa036. ISSN 2095-5138.