COVID-19-associated polyneuritis cranialis

Revision as of 08:09, 10 July 2020 by Javaria Anwer (talk | contribs)
Jump to navigation Jump to search

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19-associated polyneuritis cranialis On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19-associated polyneuritis cranialis

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19-associated polyneuritis cranialis

CDC on COVID-19-associated polyneuritis cranialis

COVID-19-associated polyneuritis cranialis in the news

Blogs on COVID-19-associated polyneuritis cranialis

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19-associated polyneuritis cranialis

For COVID-19 frequently asked outpatient questions, click here
For COVID-19 frequently asked inpatient questions, click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Javaria Anwer M.D.[2]

Synonyms and keywords:

Overview

Polyneuritis cranialis literally means inflammation of the cranial nerves. It is a rare neurological disorder characterised by multiple cranial nerve palsies sparing the spinal cord.[1] The novel coronavirus is also emerging as a neurotropic virus.

Historical Perspective

Classification

There is no established system for the classification of COVID-19 associated polyneuritis cranialis but the disease itself is a Guillain-Barré syndrome-Miller Fisher syndrome interface.[2]

Pathophysiology

  • The exact pathogenesis of COVID-19-associated polyneuritis cranials is not fully understood. Polyneuritis cranials is known to result from demyelination of lower cranial nerves.[6] Since polyneuritis cranials lies at the interface of [[GBS and Miller Fisher syndrome the mpathogenesis involved in Miller Fisher syndrome can help understand the dynamics.
  • Novel coronavirus] is usually transmitted via respiratory droplets, direct contact with infected persons, or with contaminated objects and surfaces.[7] The olfactory nerves are thought to be the primary site of viral inoculation in patients with neurological mmanifestations.[8] Following transmission, COVID-19's spike protein interacts with sialic acids linked to the patient's cell surface gangliosides to invade the neuron.

The progression to polyneuritis cranials usually involves the nerve demyelination.


Causes

COVID-19-associated polyneuritis cranialis is caused after the infection with COVID-19 Coronavirus-19 (a pan-Betacoronavirus). Polyneuritis cranialis, in general, is caused by different viral or bacterial infections and in different disease states such as:


Differentiating COVID-19-associated polyneuritis cranialis from other Diseases


Epidemiology and Demographics

The incidence/prevalence of [disease name] is approximately [number range] per 100,000 individuals worldwide.

Patients of all age groups may develop [disease name].


OR

[Acute disease name] commonly affects [age group].


There is no racial predilection to [disease name].

OR

[Disease name] usually affects individuals of the [race 1] race. [Race 2] individuals are less likely to develop [disease name].


[Disease name] affects men and women equally.

The majority of [disease name] cases are reported in [geographical region].


Risk Factors

  • In general more severe patients are likely to have neurologic symptoms.[4]

There are no established risk factors for COVID-19-associated polyneuritis cranials.

Screening

  • Currently, there are no recommended guidelines in place for the routine screening for COVID-19-associated polyneuritis cranials or coronavirus disease 2019 (COVID-19). Some countries use temperature monitoring as a screening tool. Certain companies have launched the Screening Tool but there are no formal guidelines. Click here for more information on COVID-19 screening. [12]

Natural History, Complications, and Prognosis

  • Most of the patients with polyneuritis cranislis present with diplopia a few days after an infection such as diarrhea or upper respiratory tract infection. If left untreated, [#]% of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
  • Prognosis is generally good. Clinical improvement usually starts within average 2 weeks in patients with polyneuritis cranislis.[6] COVID-19 associated polyneuritis cranislis has been reported to completely recover in 2 weeks.[5]
  • No complications have been reported.

Diagnosis

Diagnostic Study of Choice

The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].

OR

The diagnosis of [disease name] is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].

OR

The diagnosis of [disease name] is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].

OR

There are no established criteria for the diagnosis of [disease name].

History and Symptoms

Physical Examination

Patients with [disease name] usually appear [general appearance]. Physical examination of patients with [disease name] is usually remarkable for [finding 1], [finding 2], and [finding 3].

OR

The presence of [finding(s)] on physical examination is highly suggestive of [disease name].

Laboratory Findings

Electrocardiogram

There are no ECG findings associated with [disease name].


X-ray

There are no x-ray findings associated with COVID-19-associated polyneuritis cranialis.[5]

OR

An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Echocardiography or Ultrasound

CT scan

  • There are no CT scan findings associated with COVID-19-associated polyneuritis cranialis.[5]
  • Chest CT scan may be helpful in suggesting other organ involvement in the COVID-19 which is a multi-organ disease. click here to see the CT scan findings in COVID-19.

MRI

  • There are no MRI findings associated with COVID-19-associated polyneuritis cranialis.[6]
  • MRI may be helpful in suggesting other organ involvement in the COVID-19 which is a multi-organ disease. click here to see the MRI findings in COVID-19.

Other Imaging Findings

There are no other imaging findings associated with COVID-19-associated polyneuritis cranialis.

Other Diagnostic Studies

There diagnostic studies associated with COVID-19-associated polyneuritis cranialis that can help in the diagnosis include:

Treatment

Medical Therapy

Surgery

Surgical intervention is not recommended for the management of COVID-19-associated polyneuritis cranialis.

Primary Prevention

  • The disease itself is associated with COVID-19 infection as believed to be an immune response so prevention of the infection itself is the most promising primary prevention strategy at the moment.
  • There have been rigorous efforts in order to develop a vaccine for novel coronavirus and several vaccines are in the later phases of trials.[14]
  • The only prevention for COVID-19 associated abdominal pain is the prevention and early diagnosis of the coronavirus-19 infection itself. According to the CDC, the measures include:[15]
    • Frequent handwashing with soap and water for at least 20 seconds or using a alcohol based hand sanitizer with at least 60% alcohol.
    • Staying at least 6 feet (about 2 arms’ length) from other people who do not live with you.
    • Covering your mouth and nose with a cloth face cover when around others and covering sneezes and coughs.
    • Cleaning and disinfecting.

References

  1. Pavone, Piero; Incorpora, Gemma; Romantshika, Olga; Ruggieri, Martino (2007). "Polyneuritis Cranialis: Full Recovery after Intravenous Immunoglobulins". Pediatric Neurology. 37 (3): 209–211. doi:10.1016/j.pediatrneurol.2007.05.002. ISSN 0887-8994.
  2. 2.0 2.1 2.2 Wakerley, Benjamin R.; Yuki, Nobuhiro (2015). "Polyneuritis cranialis—subtype of Guillain–Barré syndrome?". Nature Reviews Neurology. 11 (11): 664–664. doi:10.1038/nrneurol.2015.115. ISSN 1759-4758.
  3. "WHO Timeline - COVID-19".
  4. 4.0 4.1 Mao, Ling; Wang, Mengdie; Chen, Shanghai; He, Quanwei; Chang, Jiang; Hong, Candong; Zhou, Yifan; Wang, David; Li, Yanan; Jin, Huijuan; Hu, Bo (2020). doi:10.1101/2020.02.22.20026500. Missing or empty |title= (help)
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Gutiérrez-Ortiz, Consuelo; Méndez, Antonio; Rodrigo-Rey, Sara; San Pedro-Murillo, Eduardo; Bermejo-Guerrero, Laura; Gordo-Mañas, Ricardo; de Aragón-Gómez, Fernando; Benito-León, Julián (2020). "Miller Fisher Syndrome and polyneuritis cranialis in COVID-19". Neurology: 10.1212/WNL.0000000000009619. doi:10.1212/WNL.0000000000009619. ISSN 0028-3878.
  6. 6.0 6.1 6.2 6.3 6.4 6.5 Polo A, Manganotti P, Zanette G, De Grandis D (May 1992). "Polyneuritis cranialis: clinical and electrophysiological findings". J. Neurol. Neurosurg. Psychiatry. 55 (5): 398–400. doi:10.1136/jnnp.55.5.398. PMC 489084. PMID 1318358.
  7. "www.who.int" (PDF).
  8. Vavougios GD (July 2020). "Potentially irreversible olfactory and gustatory impairments in COVID-19: Indolent vs. fulminant SARS-CoV-2 neuroinfection". Brain Behav. Immun. 87: 107–108. doi:10.1016/j.bbi.2020.04.071. PMC 7185018 Check |pmc= value (help). PMID 32353521 Check |pmid= value (help).
  9. 9.0 9.1 9.2 Kasundra GM, Bhargava AN, Bhushan B, Shubhakaran K, Sood I (2015). "Polyneuritis cranialis with generalized hyperreflexia as a presenting manifestation of thyrotoxicosis". Ann Indian Acad Neurol. 18 (2): 240–2. doi:10.4103/0972-2327.150625. PMC 4445207. PMID 26019429.
  10. Torres, Alcy R; Salvador, Carla; Mora, Mauricio; Mirchandani, Sharam; Chavez, Wilson (2019). "Idiopathic Recurrent Polyneuritis Cranialis: A Rare Entity". Cureus. doi:10.7759/cureus.4488. ISSN 2168-8184.
  11. Willison HJ, Jacobs BC, van Doorn PA (August 2016). "Guillain-Barré syndrome". Lancet. 388 (10045): 717–27. doi:10.1016/S0140-6736(16)00339-1. PMID 26948435.
  12. "Coronavirus (COVID-19) - Apple and CDC".
  13. Capuano A, Scavone C, Racagni G, Scaglione F (July 2020). "NSAIDs in patients with viral infections, including Covid-19: Victims or perpetrators?". Pharmacol. Res. 157: 104849. doi:10.1016/j.phrs.2020.104849. PMC 7189871 Check |pmc= value (help). PMID 32360482 Check |pmid= value (help).
  14. "NIH clinical trial of investigational vaccine for COVID-19 begins | National Institutes of Health (NIH)".
  15. "How to Protect Yourself & Others | CDC".


Template:WikiDoc Sources