COVID-19-associated multisystem inflammatory syndrome

Revision as of 21:23, 13 July 2020 by Jose Loyola (talk | contribs)
Jump to navigation Jump to search

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19-associated multisystem inflammatory syndrome On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19-associated multisystem inflammatory syndrome

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19-associated multisystem inflammatory syndrome

CDC on COVID-19-associated multisystem inflammatory syndrome

COVID-19-associated multisystem inflammatory syndrome in the news

Blogs on COVID-19-associated multisystem inflammatory syndrome

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19-associated multisystem inflammatory syndrome

For COVID-19 frequently asked inpatient questions, click here

For COVID-19 frequently asked outpatient questions, click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Harmeet Kharoud M.D.[2]

Synonyms and keywords: Multisystem Inflammatory Syndrome in Children (MIS-C)

Overview

COVID-19-associated multisystem inflammatory syndrome (also known as PIMS-TS - pediatric inflammatory multisystem syndrome temporally with SARS-CoV2 infection or MIS-C - multisystem inflammatory syndrome in children) is an uncommon clinical entity caused by SARS-CoV2 and seen mostly on children. It presents with: fever > 3 days and elevated markers of inflammation and 2 of the following 5 criteria: rash or conjunctivitis; hypotension or shock; myocardial dysfunction, pericarditis, valvulitis or coronary abnormalities; evidence of coagulopathy and/or acute gastrointestinal problems along with evidence of COVID-19. It seems to be a severe form of COVID-19 in children presenting with symptoms that can be challenging to differentiate from other pediatric infectious diseases such as toxic shock syndrome and Kawasaki disease. The pathophysiology of this form of SARS-CoV2 infection remains unknown.

Historical Perspective

  • Reports of a new febrile pediatric entity began to appear in late April 2020 during the COVID-19 pandemic in the Western Europe, characterized by systemic hyperinflammation, abdominal pain with gastrointestinal symptoms and multiorgan involvement affecting especially the myocardium causing cardiogenic shock which reminded the physicians of Kawasaki disease;[1]
  • Cases of children with such symptoms were quickly identified in the New York City area, which was then the most heavily affected city in the U.S. by the COVID-19 pandemic;[1]
  • A report of 8 cases from Evelina London Children's Hospital was published on 6 May 2020, showing very prominent markers of inflammation such as ferritin, D-dimers, triglycerides, elevated cardiac enzymes, high NT-pro-BNP levels and troponin, being empirically treated with IVIG;[1]
  • In 22 May, an article from the Journal of Pediatric Infectious Diseases Society addressed some of the similarities and differences of this new entity with Kawasaki's disease, noting that the demographics affected was significantly different, as it was not seen in Asia despite the pandemic also affecting such countries, but it was affecting mostly children of African ethnicity. The author also differentiated some of the laboratory findings, resembling the macrophage activation syndrome and not Kawasaki's disease.[1]

Classification of Disease Severity of COVID-19-associated multisystem inflammatory syndrome

  • There is no established system for the classification of COVID-19-associated multisystem inflammatory syndrome.

Pathophysiology

  • The exact pathophysiological mechanism of COVID-19-associated multisystem inflammatory syndrome is unclear.
  • Since there is a lag time between COVID-19-associated multisystem inflammatory syndrome appearance and COVID-19 infection (median time: 25 days)[2] it is suspected to be a post-infectious phenomenon related to IgG antibody-mediated enhancement of disease. There are two arguments that support this theory: the presence of IgG antibodies against SARS-CoV2 and the presence of the lag time between COVID-19 symptoms and COVID-19-associated multisystem inflammatory syndrome.[3]
  • There is, however, another theory that states that it is still an acute viral presentation of the disease due to the fact that children presenting with such symptoms undergone exploratory laparotomy which found mesenteric adenitis, supporting GI infection. SARS-CoV2 is also known to easily infect enterocytes. Another interesting point to consider is that the worsening of illness has not been seen in patients with COVID-19 who are treated with convalescent plasma, which could have occurred if it was an antibody-mediated enhancement.[3]
  • There is another hypothesis for the cytokine storm seen on children with COVID-19-associated multisystem inflammatory syndrome is originated from the known ability of coronaviruses to block type I and type III interferon responses, delaying the cytokine storm in patients that could not control the viral replication on earlier phases of the disease.[3]

Differentiating Any Disease from other disease

Summary of laboratory parameters of a COVID-19-associated multisystem inflammatory syndrome cohort compared with the historic cohorts of Kawasaki Disease, Kawasaki Disease Shock Syndrome and Toxic Shock Syndrome[4]
Parameters COVID-19-associated multisystem inflammatory syndrome (PIMS-TS) Kawasaki Disease (KD) Kawasaki Disease Shock (KDS) Toxic Shock Syndrome (TSS)
Age (median, IQR) 9 (5.7-14) 2.7 (1.4-4.7) 3.8 (0.2-18) 7.38 (2.4-15.4)
Total white cell count (*10^9/L) 17 (12-22) 13.4 (10.5-17.3) 12.1 (7.9-15.5) 15.6 (7.5-20)
Neutrophil count (*10^9/L) 13 (10-19) 7.2 (5.1-9.9) 5.5 (3.2-10.3) 16.4 (12-22)
Lymphocyte count (*10^9/L) 0.8 (0.5-1.5) 2.8 (1.5-4.4) 1.6 (1-2.5) 0.63 (0.41, 1.13)
Hemoglobin (g/L) 92 (83-103) 111.0 (105-119) 107 (98-115) 114 (98-130)
Platelet number (10^9/L) 151 (104-210) 365.0 (288-462) 235 (138-352) 155 (92- 255)
C-reactive protein (mg/L) 229 (156-338) 67.0(40-150) 193 (83-237) 201 (122, 317)
ALT (IU/L) 42 (26-95) 42.0 (24-112) 73 (34-107) 30.00 (22.10, 49.25)
Albumin (g/L) 24 (21-27) 38.0 (35-41) 30 (27-35) 27.00 (21.00, 31.00)
Ferritin (ug/L) 610 (359-1280) 200 (143-243) 301 (228-337) -
NT-Pro-BNP (pg/ml) 788 (174-10548) 41 (12-102) 396 (57-1520) -
Troponin (ng/L) 45 (8-294) 10.0 (10-20) 10 (10-30) -
D-dimer (ng/ml) 3578 (2085- 8235) 1650 (970-2660) 2580 (1460- 2990) -

Epidemiology and Demographics

  • Poor prognostic factors include age over 5 years and ferritin larger than 1400 µg/L.[7]

Age

  • Children aged age over 5 years seem to have a worse prognosis than younger ones.[7]
  • The median age found out in a study published by JAMA was 9 years.[4]

Gender

  • Most of the cases, estimated in two thirds, seem to happen in boys.[5][4]

Race

  • It seems to affect predominantly blacks and asians.[4][5]

Comorbidities

  • Clinical evidence of association with underlying diseases is still scarce since it is a rare presentation of COVID-19 in children and teenagers.[8]

Complications and Prognosis

Complications

Diagnosis

Diagnostic Criteria

In May 2020, the Centers for Disease Control and Prevention (CDC) set the criteria for multisystem inflammatory syndrome in children (MIS-C):[9]

  • Severe disease course leading to hospitalization
  • Individuals younger than 21 years old
  • Fever (body temperature, >38.0°C) or report of subjective fever present at least 24 hours
  • Laboratory evidence of inflammation
  • Multisystem organ involvement (at least two systems)
  • Laboratory-confirmed SARS-CoV-2 infection

History and Symptoms

COVID-19 associated multisystem inflammatory syndrome is associated with the following symptoms:[9]

Physical Examination

COVID-19 associated multisystem inflammatory syndrome is associated with the following physical examination findings:[9]

Laboratory Findings

COVID-19 associated multisystem inflammatory syndrome is associated with the following laboratory findings:[9]

Less common laboratory findings include:

Inflammatory biomarkers

Elevation of inflammatory markers including ESR, C reactive protein, and procalcitonin are usually seen in MIS-C. Increased level of Interleukin-6 (IL-6), Interleukin-10(IL-10) d-dimer, serum ferritin, prothrombin time have also been seen in MIS-C.

Cardiac biomarkers

Elevation of cardic enzymes including cardiac troponins (cardiac troponin I(cTnI) and cardiac troponin T (cTnT)) and Brain natriuretic peptide (BNP)) has been observed in MIS-C patients.

  • To view the complete physical examination in COVID-19, click here.
  • To view the laboratory findings on COVID-19, click here.

X-ray

X-ray of patients with COVID-19 associated multiorgan system inflammatory syndrome may be normal. When abnormal, findings may include the followings:[10]

  • Peribronchial cuffing
  • Perihilar interstitial thickening
  • Perihilar opacification
  • Perihilar consolidation
  • Low volume pleural effusion affecting both lungs
  • Left lower lobe atelectasis

CT scan

Chest CT scan of patients with COVID-19-associated multisystem inflammatory syndrome includes the following patterns:[10]

  • Consolidation and collapse of the lung bases
  • Pleural effusions
  • Diffuse bilateral ground-glass opacities with dense, patchy consolidation

To view the CT scan findings on COVID-19, click here.

Treatment

Medical Therapy

Presentation Treatment
Mild Disease
  • Symptomatic Treatment
Severe Disease

Prevention of MIS-C

  • MIS-C can be prevented by reducing the risk of child exposure to COVID-19 infection.

References

  1. 1.0 1.1 1.2 1.3 Shulman, Stanford T. "Pediatric coronavirus disease-2019–associated multisystem inflammatory syndrome." Journal of the Pediatric Infectious Diseases Society (2020).
  2. 2.0 2.1 Feldstein, Leora R., et al. "Multisystem inflammatory syndrome in US children and adolescents." New England Journal of Medicine (2020).
  3. 3.0 3.1 3.2 Rowley, Anne H. "Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children." Nature Reviews Immunology (2020): 1-2.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 Whittaker E, Bamford A, Kenny J, et al; PMIS-TS Study Group; EUCLIDS and PERFORM Consortia. Clinical and laboratory characteristics of 58 children with a pediatric multisystem inflammatory syndrome temporally associated with SARSCoV-2. JAMA. doi:10.1001/jama.2020.10369
  5. 5.0 5.1 5.2 Riphagen, Shelley, et al. "Hyperinflammatory shock in children during COVID-19 pandemic." The Lancet 395.10237 (2020): 1607-1608.
  6. Cheung, Eva W., et al. "Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City." JAMA (2020).
  7. 7.0 7.1 Pouletty, Marie, et al. "Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort." Annals of the Rheumatic Diseases (2020).
  8. "World Health Organization - Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19". WHO. 07/13/2020. Check date values in: |date= (help)
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Feldstein, Leora R.; Rose, Erica B.; Horwitz, Steven M.; Collins, Jennifer P.; Newhams, Margaret M.; Son, Mary Beth F.; Newburger, Jane W.; Kleinman, Lawrence C.; Heidemann, Sabrina M.; Martin, Amarilis A.; Singh, Aalok R.; Li, Simon; Tarquinio, Keiko M.; Jaggi, Preeti; Oster, Matthew E.; Zackai, Sheemon P.; Gillen, Jennifer; Ratner, Adam J.; Walsh, Rowan F.; Fitzgerald, Julie C.; Keenaghan, Michael A.; Alharash, Hussam; Doymaz, Sule; Clouser, Katharine N.; Giuliano, John S.; Gupta, Anjali; Parker, Robert M.; Maddux, Aline B.; Havalad, Vinod; Ramsingh, Stacy; Bukulmez, Hulya; Bradford, Tamara T.; Smith, Lincoln S.; Tenforde, Mark W.; Carroll, Christopher L.; Riggs, Becky J.; Gertz, Shira J.; Daube, Ariel; Lansell, Amanda; Coronado Munoz, Alvaro; Hobbs, Charlotte V.; Marohn, Kimberly L.; Halasa, Natasha B.; Patel, Manish M.; Randolph, Adrienne G. (2020). "Multisystem Inflammatory Syndrome in U.S. Children and Adolescents". New England Journal of Medicine. doi:10.1056/NEJMoa2021680. ISSN 0028-4793.
  10. 10.0 10.1 Hameed, Shema; Elbaaly, Heba; Reid, Catriona E. L.; Santos, Rui M. F.; Shivamurthy, Vinay; Wong, James; Jogeesvaran, K. Haran (2020). "Spectrum of Imaging Findings on Chest Radiographs, US, CT, and MRI Images in Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19". Radiology: 202543. doi:10.1148/radiol.2020202543. ISSN 0033-8419.
  11. 11.0 11.1 11.2 11.3 11.4 11.5 "Emergency Department, ICU and Inpatient Clinical Pathway for Evaluation of Possible Multisystem Inflammatory Syndrome (MIS-C)". line feed character in |title= at position 61 (help)
  12. 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 "Evaluation and Management of COVID-19 Multisystem Inflammatory Syndrome in Children (MIS-C)" (PDF). line feed character in |title= at position 63 (help)