COVID-19 interventions

Revision as of 22:37, 19 July 2020 by Javaria Anwer (talk | contribs)
Jump to navigation Jump to search

For COVID-19 frequently asked outpatient questions, click here
For COVID-19 frequently asked inpatient questions, click here

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19 interventions On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19 interventions

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19 interventions

CDC on COVID-19 interventions

COVID-19 interventions in the news

Blogs on COVID-19 interventions

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19 interventions

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Javaria Anwer M.D.[2]

Synonyms and keywords: SARS Cov2 interventions, Interventions in covid19, Novel coronavirus interventions

Overview

The feasibility of the strategy used for the management of a patient with COVID-19 depends on the patients' condition at the time of Continuous evaluation and titration of ongoing interventions ensures optimal results. The respiratory manifestations of COVID-19 may require some oxygen supplementation to ventilatory support. Autopsy findings of patients with COVID-19-associated acute respiratory distress syndrome (CARDS) demonstrated small airway occlusion due to necrosis and inflammation. The finding advocates the use of positive pressure ventilation to restore the collapsed airways. A balanced approach is required as a high end-inspiratory pressure increases the risk of lung alveolar injury.[1]

Ventilatory support in COVID-19

Supplemental Oxygen

Non-Invasive ventilation (NIV)

  • According to Chinese experts based on there experience with COVID-19 patients, both HFNC and NIPPV methods should probably be utilized in patients with PaO2/FiO2 > 150 mmHg.[1]
  • NIV methods are easier and comfortable to use and work by inducing PEEP thus decreased the respiratory workload.
  • Sufficient evidence to prove the superiority of one of the methods (HFNC or NIPPV) is unavailable as of now (July 2020). Limited studies have suggested that HFNC improves survival and lowers the intubation rate.[1]
  • Close monitoring for a deteriorating respiratory status and early intubation when indicated in a controlled setting, can help minimize the infection of health personnel and promise better patient health outcomes.[2]

High Flow Nasal Cannula (HFNC)

  • Also known as high flow nasal oxygen (HFNO) or Heated humidified high-flow (HHHF) therapy is a non-invasive technique. It is a technique of delivering heated and humidified high-flow oxygen via soft and flexible nasal prongs. Humidification prevents the drying of epithelium and facilitates the removal of mucosal secretions. Other advantages include pharyngeal dead space washout and PEEP effect.[4]
  • Surviving Sepsis Campaign (SSC) has the following recommendations regarding the use of HFNC in COVID-19 patients:[2]

Non-Invasive Positive Pressure Ventilation (NIPPV)

Invasive Mechanical Ventilation (IMV)

  • The vascular endothelial injury in COVID-19-associated acute respiratory distress syndrome (CARDS) and diverse mortality rates across the world in CARDS patients arbitrates the importance of different mechanical ventilation strategies.
  • The Chinese CDC reports the case-fatality rate to be higher than 50% in patients who received invasive mechanical ventilation.[7]
  • According to the American Society of Anesthesiology based upon the experience of Chinese anesthesiologists, timely (neither premature nor late) intubation and ventilation most effectual breathing assistance.[8]
  • Mechanical ventilation can be used in patients who have labored breathing and are unable to maintain adequate gaseous exchange leading to hypoxemia and/or hypercapnia.
  • Common clinical indications of mechanical ventilation include moderate to severe dyspnea, respiratory rate (RR) > 24-30/min, accessory muscle use for breathing, and abdominal paradox. It may also be used in patients who have an inadequate arterial partial pressure of oxygen or critically low PaO2 (PaO2 < 70 mm Hg), hypercapnia PaCO2 > 45 mm Hg, and PaO2/FiO2 ≤ 300 (corrected for altitude).

Intubation

Ventilator settings

The following ventilator setting should be used:[9][10]

Extracorporeal membrane oxygenation (ECMO)

  • The use of ECMO is recommended in COVID-19 patients with refractory hypoxemia or hypercapnia who have received invasive mechanical ventilation (IMV) and prone positioning. ECMO can help avoid ventilator-induced lung injury. [1] It is recommended to use traditional indications in hospitals with sufficient medical resources. The WHO suggests referring patients with refractory hypoxemia despite lung-protective ventilation to the settings with expertise in ECMO.[11] It is not known whether ECMO reduces mortality but 6.2% patients were treated with ECMO in Wuhan, China.[12][13]

Stratagies to improve oxygenation

Prone position ventilation

  • Prone positioning is thought to improve oxygenation by improving ventilation/perfusion (V/Q) mismatching via reduced shunting of blood through under-ventilated lung tissue.
  • Research has shown that prone position ventilation in ARDS patients with acute hypoxemic respiratory failure and spontaneous or assisted breathing reduces the mortality by 28 and 90-days.[14]
  • The strategy was widely used in COVID-19 patients in Wuhan, China.[9]
  • Prone position is an early strategy rather than a desperate rescue therapy.[15] A study by Lin Ding et al. suggests that the early application of prone ventilation with HFNC and NIV, especially in COVID-19 patients with moderate ARDS, can help avoid intubation.[16] Prone position,with other adjunct therapies may probably be used for critically ill patients even during ECMO.[1]
  • Prone position for awake patients during spontaneous or assisted breathing during NIPPV or HFNC with mild-moderate ARDS was associated with an improved oxygenation.[17] In addition, patients with an Spo2 of 95% or greater after an hour of the prone position had a lower rate of intubation.[18] To answer the question about the effectiveness, two RCTs are in progress NCT04347941 and NCT04350723.[15]
  • The American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice and Surviving Sepsis Campaign guidelines strongly recommend (moderate evidence) Prone positioning for more than 12 hours/day in patients with severe ARDS.[19][20]

{{#ev:youtube|https://www.youtube.com/watch?v=lcBPaHQUvXY}}

Special considerationss


Aerosol Generation Risk Factors and Protective Measures

Source of aerosol generation Protective Measures
Coughing
  • Utilize full Personal protective equipment (PPE) prior to entering intubation room
  • Minimize period between removal of patient's PPE and application of face mask with viral filter
  • Ensure sealing of face mask
  • Adequate dosage and time for paralytic drugs
Face Mask Seal Leak
  • Optimum fitting of the face mask
  • Vice (V-E) grip
  • Use manual ventilation Ambu bag
  • ETO2 monitoring
Intubation, NIV, manual ventilation, CPR, tracheostomy and bronchoscopy
Non-Invasive ventilation (HFNC and NIPPV)
  • Both HFNC and NIPPV methods used in COVID-19 patients generate aerosols. Concerns have been raised for a possible risk for transmission of COVID-19 to health care personnel.[26]
  • With the judicious use of the standard precautions and protective measures, the results for the aforementioned interventions have been promising. So, in addition to regular precautions such as the use of PPE followed during COVID-19 pandemic following precautions as advised by CDC to prevent airborne transmission should be taken:[27]
    • Airborne infection isolation room (AIIR)
    • Restricting susceptible healthcare personnel
    • Limiting transport and movement of the patient
    • Use of fit-tested NIOSH-approved N95 or higher level respirator for healthcare personnel.



Bronchoscopy

Tracheostomy

CPR

References

  1. 1.0 1.1 1.2 1.3 1.4 Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, Yu Z, Zhang W, Zhong Q, Zheng X, Sang L, Jiang L, Zhang J, Xiong W, Liu J, Chen D (June 2020). "Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China". Ann Intensive Care. 10 (1): 73. doi:10.1186/s13613-020-00689-1. PMC 7275657 Check |pmc= value (help). PMID 32506258 Check |pmid= value (help).
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Alhazzani, Waleed; Møller, Morten Hylander; Arabi, Yaseen M.; Loeb, Mark; Gong, Michelle Ng; Fan, Eddy; Oczkowski, Simon; Levy, Mitchell M.; Derde, Lennie; Dzierba, Amy; Du, Bin; Aboodi, Michael; Wunsch, Hannah; Cecconi, Maurizio; Koh, Younsuck; Chertow, Daniel S.; Maitland, Kathryn; Alshamsi, Fayez; Belley-Cote, Emilie; Greco, Massimiliano; Laundy, Matthew; Morgan, Jill S.; Kesecioglu, Jozef; McGeer, Allison; Mermel, Leonard; Mammen, Manoj J.; Alexander, Paul E.; Arrington, Amy; Centofanti, John E.; Citerio, Giuseppe; Baw, Bandar; Memish, Ziad A.; Hammond, Naomi; Hayden, Frederick G.; Evans, Laura; Rhodes, Andrew (2020). "Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)". Critical Care Medicine. 48 (6): e440–e469. doi:10.1097/CCM.0000000000004363. ISSN 0090-3493.
  3. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L (June 2020). "COVID-19 pneumonia: different respiratory treatments for different phenotypes?". Intensive Care Med. 46 (6): 1099–1102. doi:10.1007/s00134-020-06033-2. PMC 7154064 Check |pmc= value (help). PMID 32291463 Check |pmid= value (help).
  4. Zhang J, Lin L, Pan K, Zhou J, Huang X (December 2016). "High-flow nasal cannula therapy for adult patients". J. Int. Med. Res. 44 (6): 1200–1211. doi:10.1177/0300060516664621. PMC 5536739. PMID 27698207.
  5. Frat, Jean-Pierre; Thille, Arnaud W.; Mercat, Alain; Girault, Christophe; Ragot, Stéphanie; Perbet, Sébastien; Prat, Gwénael; Boulain, Thierry; Morawiec, Elise; Cottereau, Alice; Devaquet, Jérôme; Nseir, Saad; Razazi, Keyvan; Mira, Jean-Paul; Argaud, Laurent; Chakarian, Jean-Charles; Ricard, Jean-Damien; Wittebole, Xavier; Chevalier, Stéphanie; Herbland, Alexandre; Fartoukh, Muriel; Constantin, Jean-Michel; Tonnelier, Jean-Marie; Pierrot, Marc; Mathonnet, Armelle; Béduneau, Gaëtan; Delétage-Métreau, Céline; Richard, Jean-Christophe M.; Brochard, Laurent; Robert, René (2015). "High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure". New England Journal of Medicine. 372 (23): 2185–2196. doi:10.1056/NEJMoa1503326. ISSN 0028-4793.
  6. Cabrini L, Landoni G, Zangrillo A (February 2020). "Minimise nosocomial spread of 2019-nCoV when treating acute respiratory failure". Lancet. 395 (10225): 685. doi:10.1016/S0140-6736(20)30359-7. PMC 7137083 Check |pmc= value (help). PMID 32059800 Check |pmid= value (help).
  7. Wu, Zunyou; McGoogan, Jennifer M. (2020). "Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China". JAMA. 323 (13): 1239. doi:10.1001/jama.2020.2648. ISSN 0098-7484.
  8. "Strategies for health care response to COVID-19 shared by Chinese anesthesiologists".
  9. 9.0 9.1 9.2 9.3 9.4 Meng, Lingzhong; Qiu, Haibo; Wan, Li; Ai, Yuhang; Xue, Zhanggang; Guo, Qulian; Deshpande, Ranjit; Zhang, Lina; Meng, Jie; Tong, Chuanyao; Liu, Hong; Xiong, Lize (2020). "Intubation and Ventilation amid the COVID-19 Outbreak". Anesthesiology. 132 (6): 1317–1332. doi:10.1097/ALN.0000000000003296. ISSN 0003-3022.
  10. "NHLBI ARDS Network | Tools".
  11. "Clinical management of COVID-19".
  12. Zeng, Yingchun; Cai, Zhongxiang; Xianyu, Yunyan; Yang, Bing Xiang; Song, Ting; Yan, Qiaoyuan (2020). "Prognosis when using extracorporeal membrane oxygenation (ECMO) for critically ill COVID-19 patients in China: a retrospective case series". Critical Care. 24 (1). doi:10.1186/s13054-020-2840-8. ISSN 1364-8535.
  13. Li, Chenglong; Hou, Xiaotong; Tong, Zhaohui; Qiu, Haibo; Li, Yimin; Li, Ang (2020). "Extracorporeal membrane oxygenation programs for COVID-19 in China". Critical Care. 24 (1). doi:10.1186/s13054-020-03047-6. ISSN 1364-8535.
  14. Xie H, Zhou ZG, Jin W, Yuan CB, Du J, Lu J, Wang RL (2018). "Ventilator management for acute respiratory distress syndrome associated with avian influenza A (H7N9) virus infection: A case series". World J Emerg Med. 9 (2): 118–124. doi:10.5847/wjem.j.1920-8642.2018.02.006. PMC 5847497. PMID 29576824.
  15. 15.0 15.1 Telias, Irene; Katira, Bhushan H.; Brochard, Laurent (2020). "Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19?". JAMA. 323 (22): 2265. doi:10.1001/jama.2020.8539. ISSN 0098-7484.
  16. Ding L, Wang L, Ma W, He H (January 2020). "Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study". Crit Care. 24 (1): 28. doi:10.1186/s13054-020-2738-5. PMC 6993481 Check |pmc= value (help). PMID 32000806 Check |pmid= value (help).
  17. Sartini, Chiara; Tresoldi, Moreno; Scarpellini, Paolo; Tettamanti, Andrea; Carcò, Francesco; Landoni, Giovanni; Zangrillo, Alberto (2020). "Respiratory Parameters in Patients With COVID-19 After Using Noninvasive Ventilation in the Prone Position Outside the Intensive Care Unit". JAMA. 323 (22): 2338. doi:10.1001/jama.2020.7861. ISSN 0098-7484.
  18. Thompson, Alison E.; Ranard, Benjamin L.; Wei, Ying; Jelic, Sanja (2020). "Prone Positioning in Awake, Nonintubated Patients With COVID-19 Hypoxemic Respiratory Failure". JAMA Internal Medicine. doi:10.1001/jamainternmed.2020.3030. ISSN 2168-6106.
  19. Fan, Eddy; Del Sorbo, Lorenzo; Goligher, Ewan C.; Hodgson, Carol L.; Munshi, Laveena; Walkey, Allan J.; Adhikari, Neill K. J.; Amato, Marcelo B. P.; Branson, Richard; Brower, Roy G.; Ferguson, Niall D.; Gajic, Ognjen; Gattinoni, Luciano; Hess, Dean; Mancebo, Jordi; Meade, Maureen O.; McAuley, Daniel F.; Pesenti, Antonio; Ranieri, V. Marco; Rubenfeld, Gordon D.; Rubin, Eileen; Seckel, Maureen; Slutsky, Arthur S.; Talmor, Daniel; Thompson, B. Taylor; Wunsch, Hannah; Uleryk, Elizabeth; Brozek, Jan; Brochard, Laurent J. (2017). "An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome". American Journal of Respiratory and Critical Care Medicine. 195 (9): 1253–1263. doi:10.1164/rccm.201703-0548ST. ISSN 1073-449X.
  20. Rhodes, Andrew; Evans, Laura E.; Alhazzani, Waleed; Levy, Mitchell M.; Antonelli, Massimo; Ferrer, Ricard; Kumar, Anand; Sevransky, Jonathan E.; Sprung, Charles L.; Nunnally, Mark E.; Rochwerg, Bram; Rubenfeld, Gordon D.; Angus, Derek C.; Annane, Djillali; Beale, Richard J.; Bellinghan, Geoffrey J.; Bernard, Gordon R.; Chiche, Jean-Daniel; Coopersmith, Craig; De Backer, Daniel P.; French, Craig J.; Fujishima, Seitaro; Gerlach, Herwig; Hidalgo, Jorge Luis; Hollenberg, Steven M.; Jones, Alan E.; Karnad, Dilip R.; Kleinpell, Ruth M.; Koh, Younsuk; Lisboa, Thiago Costa; Machado, Flavia R.; Marini, John J.; Marshall, John C.; Mazuski, John E.; McIntyre, Lauralyn A.; McLean, Anthony S.; Mehta, Sangeeta; Moreno, Rui P.; Myburgh, John; Navalesi, Paolo; Nishida, Osamu; Osborn, Tiffany M.; Perner, Anders; Plunkett, Colleen M.; Ranieri, Marco; Schorr, Christa A.; Seckel, Maureen A.; Seymour, Christopher W.; Shieh, Lisa; Shukri, Khalid A.; Simpson, Steven Q.; Singer, Mervyn; Thompson, B. Taylor; Townsend, Sean R.; Van der Poll, Thomas; Vincent, Jean-Louis; Wiersinga, W. Joost; Zimmerman, Janice L.; Dellinger, R. Phillip (2017). "Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016". Intensive Care Medicine. 43 (3): 304–377. doi:10.1007/s00134-017-4683-6. ISSN 0342-4642.
  21. Cui, Yu; Cao, Rong; Wang, Yu; Li, Gen (2020). "Lung Recruitment Maneuvers for ARDS Patients: A Systematic Review and Meta-Analysis". Respiration. 99 (3): 264–276. doi:10.1159/000501045. ISSN 0025-7931.
  22. Hodgson C, Goligher EC, Young ME, Keating JL, Holland AE, Romero L, Bradley SJ, Tuxen D (November 2016). "Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation". Cochrane Database Syst Rev. 11: CD006667. doi:10.1002/14651858.CD006667.pub3. PMC 6464835. PMID 27855477.
  23. Payen JF, Chanques G, Futier E, Velly L, Jaber S, Constantin JM (June 2020). "Sedation for critically ill patients with COVID-19: Which specificities? One size does not fit all". Anaesth Crit Care Pain Med. 39 (3): 341–343. doi:10.1016/j.accpm.2020.04.010. PMC 7189860 Check |pmc= value (help). PMID 32360979 Check |pmid= value (help).
  24. "Coronavirus (COVID-19) Update: Daily Roundup May 5, 2020 | FDA".
  25. "apps.who.int" (PDF).
  26. Schünemann HJ, Khabsa J, Solo K, Khamis AM, Brignardello-Petersen R, El-Harakeh A, Darzi A, Hajizadeh A, Bognanni A, Bak A, Izcovich A, Cuello-Garcia CA, Chen C, Borowiack E, Chamseddine F, Schünemann F, Morgano GP, Muti-Schünemann G, Chen G, Zhao H, Neumann I, Brozek J, Schmidt J, Hneiny L, Harrison L, Reinap M, Junek M, Santesso N, El-Khoury R, Thomas R, Nieuwlaat R, Stalteri R, Yaacoub S, Lotfi T, Baldeh T, Piggott T, Zhang Y, Saad Z, Rochwerg B, Perri D, Fan E, Stehling F, Akl IB, Loeb M, Garner P, Aston S, Alhazzani W, Szczeklik W, Chu DK, Akl EA (May 2020). "Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19: A Living Systematic Review of Multiple Streams of Evidence". Ann. Intern. Med. doi:10.7326/M20-2306. PMC 7281716 Check |pmc= value (help). PMID 32442035 Check |pmid= value (help). Vancouver style error: initials (help)
  27. "Transmission-Based Precautions | Basics | Infection Control | CDC"".

Template:WH Template:WS