COVID-19-associated Miller-Fischer syndrome
COVID-19 Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
COVID-19-associated Miller-Fischer syndrome On the Web |
American Roentgen Ray Society Images of COVID-19-associated Miller-Fischer syndrome |
Risk calculators and risk factors for COVID-19-associated Miller-Fischer syndrome |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Seyed Arash Javadmoosavi, MD[2]
Synonyms and keywords: MFS, fisher syndrome
Overview
Miller Fisher Syndrome (MFS) is an acute peripheral neuropathy that can develop after exposure to a viral or bacterial infection. It includes triad of ophthalmoplegia, areflexia and ataxia. In COVID-19 pandemic period, while COVID-19 typically presents with fever, shortness of breath (SOB) and respiratory symptoms, MFS with prior history of COVID-19 has been seen in several cases all around the world. One retrospective study in 214 patients has shown that 8.9 % of COVID-19 patients have reported peripheral neurological symptoms.
Historical Perspective
- The first reported case of MFS with a history of COVID-19 was detected in January 2020 in Shanghai, who was a middle-aged woman diagnosed with MFS presented with areflexia, acute weakness in both legs and severe fatigue.
- Further reports were announced by medical groups in Spain and the USA which presented neuro-ophtalmological symptoms. [1]
Classification
- MFS is a rare variant of Guillain-Barre syndrome, characterized by ophtalmoplegia, areflexia and ataxia.
Pathophysiology
- Miller Fisher Syndrome (MFS) is related to dysfunction of third, fourth, and sixth cranial nerves.
- A typical serological finding in patients with MFS and prior history of covid-19 is antibodies against GQ1b ganglioside, though negative test for antibodies does not rule out the diagnosis.
- The presence of ophthalmoparesis in MFS is related to a action of anti-GQ1b antibodies on the neuromuscular junction between the cranial nerves and ocular muscle. ELISA test is positive in 70% to 90% of patients.[2]
Causes
- Although Miller Fisher Syndrome (MFS) has been detected in some patients with COVID-19, other viral and bacterial infections can also cause MFS:
Differentiating COVID-19-associated Miller-Fischer syndrome from other Diseases
MFS must be differentiated from other diseases that cause ophthalmoplegia, areflexia, and ataxia, such as:[3][4][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19]
Diseases | History and Physical | Diagnostic tests | Other Findings | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Motor Deficit | Sensory deficit | Cranial nerve Involvement | Autonomic dysfunction | Proximal/Distal/Generalized | Ascending/Descending/Systemic | Unilateral (UL)
or Bilateral (BL) or No Lateralization (NL) |
Onset | Lab or Imaging Findings | Specific test | ||
Guillian-Barre syndrome | + | - | - | - | Generalized | Ascending | BL | Insidious | CSF: ↑Protein
↓Cells |
Clinical & Lumbar Puncture | Progressive ascending paralysis following infection, possible respiratory paralysis |
Acute Flaccid Myelitis | + | + | + | - | Proximal > Distal | Ascending | UL/BL | Sudden | MRI (Longitudinal hyperintense lesions) | MRI and CSF PCR for viral etiology | Drooping eyelids
Difficulty swallowing Respiratory failure |
Adult Botulism | + | - | + | + | Generalized | Descending | BL | Sudden | Toxin test | Blood, Wound, or Stool culture | Diplopia, Hyporeflexia, Hypotonia, possible respiratory paralysis |
Infant Botulism | + | - | + | + | Generalized | Descending | BL | Sudden | Toxin test | Blood, Wound, or Stool culture | Flaccid paralysis (Floppy baby syndrome), possible respiratory paralysis |
Eaton Lambert syndrome | + | - | + | + | Generalized | Systemic | BL | Intermittent | EMG, repetitive nerve stimulation test (RNS) | Voltage gated calcium channel (VGCC) antibody | Diplopia, ptosis, improves with movement (as the day progresses) |
Myasthenia gravis | + | - | + | + | Generalized | Systemic | BL | Intermittent | EMG, Edrophonium test | Ach receptor antibody | Diplopia, ptosis, worsening with movement (as the day progresses) |
Electrolyte disturbance | + | + | - | - | Generalized | Systemic | BL | Insidious | Electrolyte panel | ↓Ca++, ↓Mg++, ↓K+ | Possible arrhythmia |
Organophosphate toxicity | + | + | - | + | Generalized | Ascending | BL | Sudden | Clinical diagnosis: physical exam & history | Clinical suspicion confirmed with RBC AchE activity | History of exposure to insecticide or living in farming environment. with : Diarrhea, Urination, Miosis, Bradycardia, Lacrimation, Emesis, Salivation, Sweating |
Tick paralysis (Dermacentor tick) | + | - | - | - | Generalized | Ascending | BL | Insidious | Clinical diagnosis: physical exam & history | - | History of outdoor activity in Northeastern United States. The tick is often still latched to the patient at presentation (often in head and neck area) |
Tetrodotoxin poisoning | + | - | + | + | Generalized | Systemic | BL | Sudden | Clinical diagnosis: physical exam & dietary history | - | History of consumption of puffer fish species. |
Stroke | +/- | +/- | +/- | +/- | Generalized | Systemic | UL | Sudden | MRI +ve for ischemia or hemorrhage | MRI | Sudden unilateral motor and sensory deficit in a patient with a history of atherosclerotic risk factors (diabetes, hypertension, smoking) or atrial fibrillation. |
Poliomyelitis | + | + | + | +/- | Proximal > Distal | Systemic | BL or UL | Sudden | PCR of CSF | Asymmetric paralysis following a flu-like syndrome. | |
Transverse myelitis | + | + | + | + | Proximal > Distal | Systemic | BL or UL | Sudden | MRI & Lumbar puncture | MRI | History of chronic viral or autoimmune disease (e.g. HIV) |
Neurosyphilis | + | + | - | +/- | Generalized | Systemic | BL | Insidious | MRI & Lumbar puncture | CSF VDRL-specifc
CSF FTA-Ab -sensitive |
History of unprotected sex or multiple sexual partners.
History of genital ulcer (chancre), diffuse maculopapular rash. |
Muscular dystrophy | + | - | - | - | Proximal > Distal | Systemic | BL | Insidious | Genetic testing | Muscle biopsy | Progressive proximal lower limb weakness with calf pseudohypertrophy in early childhood. Gower sign positive. |
Multiple sclerosis exacerbation | + | + | + | + | Generalized | Systemic | NL | Sudden | ↑CSF IgG levels
(monoclonal) |
Clinical assessment and MRI | Blurry vision, urinary incontinence, fatigue |
Amyotrophic lateral sclerosis | + | - | - | - | Generalized | Systemic | BL | Insidious | Normal LP (to rule out DDx) | MRI & LP | Patient initially presents with upper motor neuron deficit (spasticity) followed by lower motor neuron deficit (flaccidity). |
Inflammatory myopathy | + | - | - | - | Proximal > Distal | Systemic | UL or BL | Insidious | Elevated CK & Aldolase | Muscle biopsy | Progressive proximal muscle weakness in 3rd to 5th decade of life. With or without skin manifestations. |
Epidemiology and Demographics
- While the incidence of MFS is one or two-person per million each year, the prevalence of MFS associated with COVID-19 is still unknown.
Risk Factors
- There are no established risk factors for MFS associated with COVID-19.
Screening
- There is insufficient evidence to recommend routine screening for patients with MFS caused by COVID-19.
Natural History, Complications, and Prognosis
- There is an increased risk of death in patients over the age of 60-year-old. Hence, the mortality rate is estimated to be 3.6%.
- Risk factors for severe illness and poor prognosis include:
- Old age
- Male gender
- Patients with
Diagnosis
Diagnostic Study of Choice
- Although the diagnosis of COVID-19 is based on respiratory symptoms, it can be associated with neurological symptoms, which overlap the diagnosis of MFS.
- Consequently, inpatient with prior history of COVID-19, other neurologic diseases should be ruled out and anti-GQ1b antibody test should be considered.
- Also, in new patients with suspicious symptoms for COVID-19 and neurological symptoms, a nasal swab test and neurological examination should be considered.
- MRI may be performed as a part of the diagnostic workup. Although in majority of cases no abnormality is detected, enlargement and prominent enhancement in orbits and retro-orbital region has been reported in some cases.[20]. [21]
History and Symptoms
Symptoms of covid-19 associated with MFS include:
- Respiratory system symptoms
- Neurological symptoms
Physical Examination
- Patients with covid-19 associated with MFS present various signs and symptoms related to systematic and neurological presentation. Hence physical examination should be performed based on signs and symptoms include:
Vitals
Abnormal signs associated with covid-19:
Neurological
- Eye dropping
- Blurry vision
- Paresthesia
- Decreased sensation
- Myalgia
- Weakness of breathing muscle
Laboratory Findings
- Laboratory findings consistent with the diagnosis of COVID-19 include positive PCR nasal swab.
- Laboratory tests for neurological signs are not diagnostic and should be used with other clinical parameters. They include:
- Ganglioside (GM1) Antibodies, IgG and IgM
- GD1b Antibody, IgM
- GQ1b Antibody, IgG
Electrocardiogram
X-ray
- Chest X-ray is less sensitive in detection of COVID-19 in comparison with CT.
- However, in some cases lung consolidation and patchy peripheral opacities corresponding to ground glass opacities has been reported.[23]
Echocardiography or Ultrasound
- Lung ultrasound may be helpful in the evaluation of patients with COVID-19. It indicates :
- Multiple B-lines
- Ranging from focal to diffuse with spared areas
- Irregular and thickened pleural lines
- Subpleural consolidations
- Alveolar consolidations
- Bilateral A-lines
CT scan
The preliminary findings of CT in COVID-19 associated with MFS include:
- Bilateral ground glass opacities
- Air space consolidation
- Bronchovascular thickening
- Traction bronchiectasis
MRI
- Brain MRI may be helpful in the diagnosis of MFS in patients with prior history of COVID-19 and neurological manifestations.
- Although there can be no abnormalities, multiple cranial nerve enhancement has been reported in some patients.
Other Diagnostic Studies
- There are no other diagnostic studies associated with COVID-19 with MFS manifestations.
Treatment
Medical Therapy
- No specific treatment and vaccine exists for covid-19 yet.
- However, patients with moderate to severe ARDS and respiratory manifestations can benefit from Mechanical ventilation and extracorporeal membrane oxygenation (ECMO).
- In some patients the combination of antiviral therapies like protease inhibitors, ritonavir, and lopinavir (100-400mg/day)[24] indicated partial success in treatment of COVID-19.
- Remdesivir (100-200mg/day)[25], a drug originally developed to treat Ebola virus, showed positive results against SARS-CoV-2.
- Dexamethasone (6mg/day)[26] has been announced as an effective treatment in patients with systematic manifestations.
Surgery
- Surgical intervention is not recommended for the management of covid-19.
Primary Prevention
- Effective measures for the primary prevention of covid-19 include hand-washing, wearing of face masks, social distancing, avoidance of large gathering and self-isolation for patients who have mild symptoms.
References
- ↑ {{https://n.neurology.org/content/early/2020/04/17/WNL.0000000000009619}}
- ↑ {{https://pubmed.ncbi.nlm.nih.gov/10695710}}
- ↑ {{https://rarediseases.org/rare-diseases/miller-fisher-syndrome/}}
- ↑ 4.0 4.1 Kira R (February 2018). "[Acute Flaccid Myelitis]". Brain Nerve (in Japanese). 70 (2): 99–112. doi:10.11477/mf.1416200962. PMID 29433111.
- ↑ Hopkins SE (November 2017). "Acute Flaccid Myelitis: Etiologic Challenges, Diagnostic and Management Considerations". Curr Treat Options Neurol. 19 (12): 48. doi:10.1007/s11940-017-0480-3. PMID 29181601.
- ↑ Messacar K, Schreiner TL, Van Haren K, Yang M, Glaser CA, Tyler KL, Dominguez SR (September 2016). "Acute flaccid myelitis: A clinical review of US cases 2012-2015". Ann. Neurol. 80 (3): 326–38. doi:10.1002/ana.24730. PMC 5098271. PMID 27422805.
- ↑ Chong PF, Kira R, Mori H, Okumura A, Torisu H, Yasumoto S, Shimizu H, Fujimoto T, Hanaoka N, Kusunoki S, Takahashi T, Oishi K, Tanaka-Taya K (February 2018). "Clinical Features of Acute Flaccid Myelitis Temporally Associated With an Enterovirus D68 Outbreak: Results of a Nationwide Survey of Acute Flaccid Paralysis in Japan, August-December 2015". Clin. Infect. Dis. 66 (5): 653–664. doi:10.1093/cid/cix860. PMC 5850449. PMID 29028962.
- ↑ Messacar K, Asturias EJ, Hixon AM, Van Leer-Buter C, Niesters H, Tyler KL, Abzug MJ, Dominguez SR (August 2018). "Enterovirus D68 and acute flaccid myelitis-evaluating the evidence for causality". Lancet Infect Dis. 18 (8): e239–e247. doi:10.1016/S1473-3099(18)30094-X. PMID 29482893. Vancouver style error: initials (help)
- ↑ Chen IJ, Hu SC, Hung KL, Lo CW (September 2018). "Acute flaccid myelitis associated with enterovirus D68 infection: A case report". Medicine (Baltimore). 97 (36): e11831. doi:10.1097/MD.0000000000011831. PMC 6133480. PMID 30200066.
- ↑ "Botulism | Botulism | CDC".
- ↑ McCroskey LM, Hatheway CL (May 1988). "Laboratory findings in four cases of adult botulism suggest colonization of the intestinal tract". J. Clin. Microbiol. 26 (5): 1052–4. PMC 266519. PMID 3290234.
- ↑ Lindström M, Korkeala H (April 2006). "Laboratory diagnostics of botulism". Clin. Microbiol. Rev. 19 (2): 298–314. doi:10.1128/CMR.19.2.298-314.2006. PMC 1471988. PMID 16614251.
- ↑ Brook I (2006). "Botulism: the challenge of diagnosis and treatment". Rev Neurol Dis. 3 (4): 182–9. PMID 17224901.
- ↑ Dimachkie MM, Barohn RJ (May 2013). "Guillain-Barré syndrome and variants". Neurol Clin. 31 (2): 491–510. doi:10.1016/j.ncl.2013.01.005. PMC 3939842. PMID 23642721.
- ↑ Walling AD, Dickson G (February 2013). "Guillain-Barré syndrome". Am Fam Physician. 87 (3): 191–7. PMID 23418763.
- ↑ Gilhus NE (2011). "Lambert-eaton myasthenic syndrome; pathogenesis, diagnosis, and therapy". Autoimmune Dis. 2011: 973808. doi:10.4061/2011/973808. PMC 3182560. PMID 21969911.
- ↑ Krishnan C, Kaplin AI, Deshpande DM, Pardo CA, Kerr DA (May 2004). "Transverse Myelitis: pathogenesis, diagnosis and treatment". Front. Biosci. 9: 1483–99. PMID 14977560.
- ↑ Amato AA, Greenberg SA (December 2013). "Inflammatory myopathies". Continuum (Minneap Minn). 19 (6 Muscle Disease): 1615–33. doi:10.1212/01.CON.0000440662.26427.bd. PMID 24305450.
- ↑ Berger JR, Dean D (2014). "Neurosyphilis". Handb Clin Neurol. 121: 1461–72. doi:10.1016/B978-0-7020-4088-7.00098-5. PMID 24365430.
- ↑ {{http://www.ajnr.org/content/early/2020/05/28/ajnr.A6609}}
- ↑ {{https://rarediseases.org/rare-diseases/miller-fisher-syndrome/}}
- ↑ {{http://www.ajnr.org/content/early/2020/05/28/ajnr.A6609}}
- ↑ {{https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141645/}}
- ↑ Cao, Bin; Wang, Yeming; Wen, Danning; Liu, Wen; Wang, Jingli; Fan, Guohui; Ruan, Lianguo; Song, Bin; Cai, Yanping; Wei, Ming; Li, Xingwang; Xia, Jiaan; Chen, Nanshan; Xiang, Jie; Yu, Ting; Bai, Tao; Xie, Xuelei; Zhang, Li; Li, Caihong; Yuan, Ye; Chen, Hua; Li, Huadong; Huang, Hanping; Tu, Shengjing; Gong, Fengyun; Liu, Ying; Wei, Yuan; Dong, Chongya; Zhou, Fei; Gu, Xiaoying; Xu, Jiuyang; Liu, Zhibo; Zhang, Yi; Li, Hui; Shang, Lianhan; Wang, Ke; Li, Kunxia; Zhou, Xia; Dong, Xuan; Qu, Zhaohui; Lu, Sixia; Hu, Xujuan; Ruan, Shunan; Luo, Shanshan; Wu, Jing; Peng, Lu; Cheng, Fang; Pan, Lihong; Zou, Jun; Jia, Chunmin; Wang, Juan; Liu, Xia; Wang, Shuzhen; Wu, Xudong; Ge, Qin; He, Jing; Zhan, Haiyan; Qiu, Fang; Guo, Li; Huang, Chaolin; Jaki, Thomas; Hayden, Frederick G.; Horby, Peter W.; Zhang, Dingyu; Wang, Chen (2020). "A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19". New England Journal of Medicine. 382 (19): 1787–1799. doi:10.1056/NEJMoa2001282. ISSN 0028-4793.