Cyanosis surgery

Revision as of 09:42, 27 October 2020 by Sara Zand (talk | contribs)
Jump to navigation Jump to search

Cyanosis Microchapters

Home

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Cyanosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Cyanosis surgery On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cyanosis surgery

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cyanosis surgery

CDC on Cyanosis surgery

Cyanosis surgery in the news

Blogs on Cyanosis surgery

Directions to Hospitals Treating Cyanosis

Risk calculators and risk factors for Cyanosis surgery

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Overview

Recommendation for surgery in cyanotic heart disease

[[ Recommendation for surgical repair of cyanotic congenital heart disease
Indications for repair of a scimitar vein in [[Anomalous pulmonary venous connection (Class I, Level of Evidence B ,Abnormal connection between pulmonary veins and systemic veins causing right heart volume overload such as ASD):

❑ decreased functional capacity
right ventricle enlagment
❑ Net left to right shunt or QP/QS > 1.5/1
Pulmonary artery systolic pressure less than 50% systemic pressure
Pulmonary vascular resistance less than 1/3 of systemic resistance
❑ Repair at the time of closure of a sinus venous defect or ASD

Indications for surgery in anomalous Pulmonary Venous Connections(Class 2a, Level of Evidence B) :

❑Asymptomatic adults with right ventricle volume overload
❑ Large left to right shunt( QP/QS > 1.5/1
Pulmonary artery pressure <50% systemic pressure and pulmonary artery resistance <1/3 systemic resistance
❑Evidence of Right ventricle volume overload and QP/QS>1.5/1

Synchronized cardioversion : (Class I, Level of Evidence B)
❑ Highly effective in termination of AVRT

❑ In unstable hemodynamic or stable hemodynamic and ineffectiveness of vagal maneuver or adenosin is recommended
❑ Avoidance of complications associated antiarrhythmic drugs
❑ In the presence of PVC or PAC just after cardioversion, antiarrhythmic drugs is recommended for prevention of restarting AVRT
❑ In the presence of hemodynamically unstable and preexcited AF, synchronized cardioversion is recommended

Ibutilide or intravenous procainamide:(Class I, Level of Evidence C)

❑ effective in hemodynamic stable and preexcited AF by slowing conduction over the accessory pathway
Contraindications: Compromised left ventricular function

Intravenous diltiazem,verapamil ,beta blockers : (Class 2a, Level of Evidence B-C)

❑ Effective for acute treatment of orthodromic AVRT with out pre-excitation on resting ECG during sinus rhythm(LOR=B)
❑ Intravenous diltiazem or verapamil effectively terminate 90% to 95% of AVRT with out pre-excitation on their resting sinus-rhythm ECG
❑ Hypotension may occur in 3% patients receiving Intravenous diltiazem or verapamil
❑ Intravenous beta blocker are effective for terminating AVRT with low risk of associated complications(LOR=C)

Intravenous betablockers,diltiazem,verapamil (Class 2b, Level of Evidence B):

❑ Acute termination of orthodromic AVRT with pre-excitation on resting ECG with out response to other treatment
❑ Complication is enhancing conduction over the accessory pathway if the AVRT converts to AF during administration of the medication

Intravenous digoxin,intravenous amiodarone,intravenous or oral beta blockers,diltiazem,verapamil : (Class 3, Harm, Level of Evidence B)

❑ Harmful in acute termination of peexcitated AF due to increased risk of ventricular fibrillation by these mechanisms:
❑ Increased conduction over the accessory pathway and slowing or blocking conduction over AV node
❑ Deceased refractory period of accessory pathway by digoxin
❑ Increased cathecolamin due to drug induced hypotension such as amiodarone, beta blocker, verapamil, diltiazem






References

Template:WH Template:WS