Fabry's disease pathophysiology

Jump to navigation Jump to search

Fabry's disease Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Fabry's disease from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Fabry's disease pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Fabry's disease pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Fabry's disease pathophysiology

CDC on Fabry's disease pathophysiology

Fabry's disease pathophysiology in the news

Blogs on Fabry's disease pathophysiology

Directions to Hospitals Treating Fabry's disease

Risk calculators and risk factors for Fabry's disease pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Sukaina Furniturewala, MBBS[2]

Overview

Genes involved in the pathogenesis of Fabry's disease include the GLA gene, which codes the important enzyme of alpha-galactosidase. The absence or lack of this enzyme causes Gb3 accumulation in different organs. The main pathological finding is detection of these inclusion in different cells with electron microscopies.

Pathophysiology

Physiology

Pathogenesis

Genetics

Gross pathology

Microscopic pathology

General

On microscopic histopathological analysis, tissue deposition of glycosphingolipids crystalline is a characteristic finding of Fabry's disease.

  • Glycosphingolipid inclusions morphology: coarsely lamellated appearance, maybe round with onion-skin likes structure (Myelin figures), or dense unstructured layer (Zebra bodies), some can be dark electrodense and amorphous especially in endothelial and mesangial cells.[17]
  • Electron Microscopy: The most accurate method for detection of glycosphingolipids depositions. preserved whole glycosphingolipids during the preparation process.[18]
  • Light microscopy is not as specific in confirming FD as electron microscopy and thus is only done when electron microscopy is unavailable.
Light microscopy
Paraffin-embedded sections [19][20] H&E staining Cytoplasm vacuolation

(swollen appearance)

Characteristic but not pathognomonic
Jones methenamine silver (JMS) staining granular and argyrophilic inclusions due to the residual carbohydrate part of glycosphingolipids
Methacrylate-embedded sections[21] Lipid-soluble dye glycosphingolipids inclusions not routine
Frozen section[22] Allows preservation but may lose dome details
Epon-embedded sections[23] Toluidine blue dark blue and dark gray round spiral inclusions detect entire glycosphingolipids
Methylene blue
  • Immunofluorescence Microscopy: Negative, not react to IgG, IgM, IgA, C3, C1q antibodies.
  • Immunohistochemistry: Murine anti-Gb3 antibody id used.[24]
Organs
Organs Light microscope Electron microscope
Skin (Angiokeratoma)
  • Hyperkeratosis
  • Hyperplastic epidermis
  • Dilated subepidermal capillaries
  • Moderate dilatation in deep vessels with partially organized fibrinous thrombi[25]
  • Atrophic/Scarce sweat glands[26]
  • Glycosphingolipids is generally small in skin and can be seen particularly in endothelial cells, pericytes and smooth muscle of the cutaneous capillaries, venules and arterioles.[27]


  • large electron-dense glycosphingolipids deposits are seen in almost all cells.[28]
Kidney

Urinary sediment

  • Protein, casts, red cells, birefringent lipid globules
Organ Histology
  • Glomeruli
    • White color
    • Enlarged and vacuolate glomerular cells (honeycomb appearance) esp; podocytes
  • Tubules
    • Vacuolated cells esp; distal tubule and Henle loop
  • Endothelial
    • Vacuolated cells esp; small arteries and arterioles
  • Smooth Muscle
    • Vacuolated cells
  • Interstitial
    • Foam and lipid-laden appearance
  • Non-specific chronic signs of kidney injury
  • Severe cases; progressive glomerular sclerosis, tubular atrophy, a varying amount of interstitial fibrosis[29]


  • Glomeruli
    • Glycosphingolipid inclusions in every cell esp; podocytes [effacement of foot process]/ Less commonly in endothelial and mesangial cells
    • Membranofibrillary and non-immunogenic deposits in subendothelial
    • Basement membrane
      • Initial: normal
      • Progression: Thickening
    • Free-floating myelin figures in Bowman's space
  • Tubules
    • Enlarge cells contain very large glycosphingolipid
  • Endothelial
    • Inclusions are more varied in size and shape
    • Elongated and racket amorphous shaped
    • Cytoplasm swelling: decrease vessel caliber
  • Smooth muscle
    • Inclusions in arterial, arterioles, and pericytes
    • Cells may get necrosis and absent
  • Interstitial
  • Lipid inclusion in hemizygous cases
  • Indicate severe cases leading to ESRD[30]
Heart
  • Myocyte large sarcoplasmic vacuolations [large clear space in myocytes]
  • Mild fibrosis
  • Coronary arteries typical atherosclerosis with white discoloration
  • Vessels hypertropia due to deposition of inclusions
  • Mitral and tricuspid valve: fibrosis with lipid laden cells
  • Endomyocardial sarcoplasmic myeloid bodies within the center of the myocytes
  • Concentric lamellar bodies
  • Endothelial inclusion deposition esp; interstitial capillaries
Ocular system
  • Deposition of glycosphingolipids in:
    • the endothelial, perivascular, smooth muscle of ocular and orbital vessels
    • Smooth muscle of iris and ciliary bodies
    • Perineural cell and connective tissue of lens and cornea
  • Deposition of glycosphingolipids in:
    • The basal layer of conjunctival epithelial cell
    • Surface epithelium
    • Conjunctival goblet cells
  • Hyperplasia and edema of corneal epithelial cell
Nervous System
  • Peripheral nerves
    • Glycosphingolipids accumulation in nerve fibers
    • Small unmyelinated degeneration fibers
    • loss of internal organelles in swelling axons with the accumulation of glycosphingolipids [31]
  • Central nervous system
    • Diffuse glycosphingolipids storage in CNS, such as the amygdala, hypothalamus, substantia nigra, pontine reticular formation, Autonomic nerve roots, etc.
    • Vascular involvement: smooth muscle cells of parenchymal and leptomeningeal vessels
    • Cortical infarcts [32][33]


References

  1. Tuttolomondo A, Simonetta I, Riolo R, Todaro F, Di Chiara T, Miceli S; et al. (2021). "Pathogenesis and Molecular Mechanisms of Anderson-Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies". Int J Mol Sci. 22 (18). doi:10.3390/ijms221810088. PMC 8465525 Check |pmc= value (help). PMID 34576250 Check |pmid= value (help).
  2. Kok K, Zwiers KC, Boot RG, Overkleeft HS, Aerts JMFG, Artola M (2021). "Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions". Biomolecules. 11 (2). doi:10.3390/biom11020271. PMC 7918333 Check |pmc= value (help). PMID 33673160 Check |pmid= value (help).
  3. Tuttolomondo A, Simonetta I, Riolo R, Todaro F, Di Chiara T, Miceli S; et al. (2021). "Pathogenesis and Molecular Mechanisms of Anderson-Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies". Int J Mol Sci. 22 (18). doi:10.3390/ijms221810088. PMC 8465525 Check |pmc= value (help). PMID 34576250 Check |pmid= value (help).
  4. Tuttolomondo A, Simonetta I, Riolo R, Todaro F, Di Chiara T, Miceli S; et al. (2021). "Pathogenesis and Molecular Mechanisms of Anderson-Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies". Int J Mol Sci. 22 (18). doi:10.3390/ijms221810088. PMC 8465525 Check |pmc= value (help). PMID 34576250 Check |pmid= value (help).
  5. Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW; et al. (1993). "GeneReviews®". PMID 20301469.
  6. Echevarria L, Benistan K, Toussaint A, Dubourg O, Hagege AA, Eladari D; et al. (2016). "X-chromosome inactivation in female patients with Fabry disease". Clin Genet. 89 (1): 44–54. doi:10.1111/cge.12613. PMID 25974833.
  7. Mehta A, Beck M, Sunder-Plassmann G (2006). "Fabry Disease: Perspectives from 5 Years of FOS". PMID 21290673.
  8. Eng CM, Desnick RJ (1994). "Molecular basis of Fabry disease: mutations and polymorphisms in the human alpha-galactosidase A gene". Hum Mutat. 3 (2): 103–11. doi:10.1002/humu.1380030204. PMID 7911050.
  9. Mehta A, Beck M, Sunder-Plassmann G (2006). "Fabry Disease: Perspectives from 5 Years of FOS". PMID 21290673.
  10. Germain DP (2010). "Fabry disease". Orphanet J Rare Dis. 5: 30. doi:10.1186/1750-1172-5-30. PMC 3009617. PMID 21092187.
  11. Mehta A, Beck M, Sunder-Plassmann G (2006). "Fabry Disease: Perspectives from 5 Years of FOS". PMID 21290673.
  12. Glass RB, Astrin KH, Norton KI, Parsons R, Eng CM, Banikazemi M; et al. (2004). "Fabry disease: renal sonographic and magnetic resonance imaging findings in affected males and carrier females with the classic and cardiac variant phenotypes". J Comput Assist Tomogr. 28 (2): 158–68. doi:10.1097/00004728-200403000-00002. PMID 15091117.
  13. Frustaci A, Chimenti C (2007). "Images in cardiovascular medicine. Cryptogenic ventricular arrhythmias and sudden death by Fabry disease: prominent infiltration of cardiac conduction tissue". Circulation. 116 (12): e350–1. doi:10.1161/CIRCULATIONAHA.107.723387. PMID 17875975.
  14. Velzeboer CM, de Groot WP (1971). "Ocular manifestations in angiokeratoma corporis diffusum (Fabry)". Br J Ophthalmol. 55 (10): 683–92. doi:10.1136/bjo.55.10.683. PMC 1208523. PMID 5124844.
  15. Velzeboer CM, de Groot WP (1971). "Ocular manifestations in angiokeratoma corporis diffusum (Fabry)". Br J Ophthalmol. 55 (10): 683–92. doi:10.1136/bjo.55.10.683. PMC 1208523. PMID 5124844.
  16. Fellgiebel A, Müller MJ, Mazanek M, Baron K, Beck M, Stoeter P (2005). "White matter lesion severity in male and female patients with Fabry disease". Neurology. 65 (4): 600–2. doi:10.1212/01.wnl.0000173030.70057.eb. PMID 16116124.
  17. Fischer EG, Moore MJ, Lager DJ (2006). "Fabry disease: a morphologic study of 11 cases". Mod Pathol. 19 (10): 1295–301. doi:10.1038/modpathol.3800634. PMID 16799480.
  18. HENRY EW, RALLY CR (1963). "The renal lesion in angiokeratoma corporis diffusum (Fabry's disease)". Can Med Assoc J. 89: 206–13. PMC 1921736. PMID 13953819.
  19. Faraggiana T, Churg J, Grishman E, Strauss L, Prado A, Bishop DF; et al. (1981). "Light- and electron-microscopic histochemistry of Fabry's disease". Am J Pathol. 103 (2): 247–62. PMC 1903824. PMID 6786101.
  20. Desnick RJ, Wasserstein MP, Banikazemi M (2001). "Fabry disease (alpha-galactosidase A deficiency): renal involvement and enzyme replacement therapy". Contrib Nephrol (136): 174–92. doi:10.1159/000060184. PMID 11688379.
  21. Faraggiana T, Churg J, Grishman E, Strauss L, Prado A, Bishop DF; et al. (1981). "Light- and electron-microscopic histochemistry of Fabry's disease". Am J Pathol. 103 (2): 247–62. PMC 1903824. PMID 6786101.
  22. Faraggiana T, Churg J, Grishman E, Strauss L, Prado A, Bishop DF; et al. (1981). "Light- and electron-microscopic histochemistry of Fabry's disease". Am J Pathol. 103 (2): 247–62. PMC 1903824. PMID 6786101.
  23. Faraggiana T, Churg J, Grishman E, Strauss L, Prado A, Bishop DF; et al. (1981). "Light- and electron-microscopic histochemistry of Fabry's disease". Am J Pathol. 103 (2): 247–62. PMC 1903824. PMID 6786101.
  24. Chatterjee S, Gupta P, Pyeritz RE, Kwiterovich PO (1984). "Immunohistochemical localization of glycosphingolipid in urinary renal tubular cells in Fabry's disease". Am J Clin Pathol. 82 (1): 24–8. doi:10.1093/ajcp/82.1.24. PMID 6430064.
  25. Nakamura T, Kaneko H, Nishino I (1981). "Angiokeratoma corporis diffusum (Fabry disease): ultrastructural studies of the skin". Acta Derm Venereol. 61 (1): 37–41. PMID 6164212.
  26. Desnick RJ, Wasserstein MP, Banikazemi M (2001). "Fabry disease (alpha-galactosidase A deficiency): renal involvement and enzyme replacement therapy". Contrib Nephrol (136): 174–92. doi:10.1159/000060184. PMID 11688379.
  27. Tarnowski WM, Hashimoto K (1969). "New light microscopic skin findings in Fabry's disease. Study of four patients using plastic-embedded tissue". Acta Derm Venereol. 49 (4): 386–9. PMID 4185107.
  28. Tarnowski WM, Hashimoto K (1969). "New light microscopic skin findings in Fabry's disease. Study of four patients using plastic-embedded tissue". Acta Derm Venereol. 49 (4): 386–9. PMID 4185107.
  29. Selvarajah M, Nicholls K, Hewitson TD, Becker GJ (2011). "Targeted urine microscopy in Anderson-Fabry disease: a cheap, sensitive and specific diagnostic technique". Nephrol Dial Transplant. 26 (10): 3195–202. doi:10.1093/ndt/gfr084. PMID 21382994.
  30. Desnick RJ, Wasserstein MP, Banikazemi M (2001). "Fabry disease (alpha-galactosidase A deficiency): renal involvement and enzyme replacement therapy". Contrib Nephrol (136): 174–92. doi:10.1159/000060184. PMID 11688379.
  31. Cable WJ, Dvorak AM, Osage JE, Kolodny EH (1982). "Fabry disease: significance of ultrastructural localization of lipid inclusions in dermal nerves". Neurology. 32 (4): 347–53. doi:10.1212/wnl.32.4.347. PMID 6278363.
  32. Okeda R, Nisihara M (2008). "An autopsy case of Fabry disease with neuropathological investigation of the pathogenesis of associated dementia". Neuropathology. 28 (5): 532–40. doi:10.1111/j.1440-1789.2008.00883.x. PMID 18410273.
  33. Kaye EM, Kolodny EH, Logigian EL, Ullman MD (1988). "Nervous system involvement in Fabry's disease: clinicopathological and biochemical correlation". Ann Neurol. 23 (5): 505–9. doi:10.1002/ana.410230513. PMID 3133979.