There are a wide variety of imaging studies that can be used to diagnoseaortic dissection, but in general, transesophageal imaging is the imaging modality of choice in the acutely ill patient and MRI is the imaging modality of choice in the assessment of longstanding aortic disease in a patient who has chronicchest pain who is hemodynamically stable or for the evaluation of a chronic dissection.
Imaging in Acute aortic dissection
Use of Transesophageal Echo Imaging in the Acute Setting
In the management of the acute patient with suspected aortic dissection, a transesophageal echo performed acutely in the emergency room is the preferred approach. If the patient is hemodynamically unstable, then a transesophageal echo can be performed in the operating room as the patient after the patient has been induced and is being prepared for surgery.
Use of MRI Imaging in the Absence of Acute Disease
MRI is the imaging modality of choice in the assessment of
A CT scan can be used if neither a TEE nor MRI is available in a timely fashion, or if there is a contraindication to their performance. An example would be after hours in an emergency room setting. If the results of the CT scan are non-diagnostic, they TEE or MRI should be performed to confirm the diagnosis.
Use of Aortography
Aortography is rarely used in the modern era. It can be used of the other imaging modalities are not available or are inconclusive.
Use of Coronary Angiography
Pre-operative angiography has not been associated with improved outcomes in retrospective analyses. It is reasonable to perform coronary angiography in the following scenarios:
"1. The role of chest x-ray in the evaluation of possible thoracic aortic disease should be directed by the patient's pretest risk of disease as follows:
a. Intermediate risk: Chest x-ray should be performed on all intermediate-risk patients, as it may establish a clear alternate diagnosis that will obviate the need for definitive aortic imaging. (Level of Evidence: C)
b. Low risk: Chest x-ray should be performed on all low-risk patients, as it may either establish an alternative diagnosis or demonstrate findings that are suggestive of thoracic aortic disease, indicating the need for urgent definitive aortic imaging. (Level of Evidence: C)"
"1. A negative chest x-ray should not delay definitive aortic imaging in patients determined to be high risk for aortic dissection by initial screening. (Level of Evidence: C)"
Aortic Imaging Techniques to Determine the Presence and Progression of Thoracic Aortic Disease (DO NOT EDIT)[1]
"1. In patients with known or suspected aortic disease, aortic diameters should be mea-sured at reproducible anatomic landmarks perpendicular to axis of blood flow, and these measurement methods should be reported in a clear and consistent manner. In cases of asymmetric or oval contour, the longest diam-eter and its perpendicular diameter should be reported.3,4Figure 10.Classification of Thoracoabdominal Aortic Aneurysms.The classification of thoracoabdominal aortic aneurysms according to extent of aortic involvement as originally proposed by Crawford is as follows3: Extent I, below the left subclavian to above the celiac axis or opposite the superior mesenteric and above the renal arteries; Extent II,below the left subclavian and including the infrarenal abdominal aorta to the level of the aortic bifurcation; Extent III, below T6 intercostal space, tapering to just above the infrarenal abdominal aorta to the iliac bifurcation; and Extent IV, below T12, tapering to above the iliac bifurcation. Safi et al1 proposed expanding the classification with the addition of Extent V, below T6, tapering to just above the renal arteries. (Level of Evidence: B-NR)"
"3. For measurements taken by echocardiography, the internal diameter should be measured perpendicular to the axis of blood flow. For aortic root measurements the widest diameter, typically at the mid-sinus level, should be used. (Level of Evidence: C)"
"4. Abnormalities of aortic morphology should be recognized and reported separately even when aortic diameters are within normal limits. (Level of Evidence: C)"
"2. Annual imaging is recommended for patients with Marfan syndrome if stability of the aortic diameter is documented. If the maximal aortic diameter is 4.5 cm or greater, or if the aortic diameter shows significant growth from baseline, more frequent imaging should be considered. (Level of Evidence: C)"
"3. If the maximal cross-sectional area in square centimeters of the ascending aorta or root divided by the patient's height in meters exceeds a ratio of 10, surgical repair is reasonable because shorter patients have dissection at a smaller size and 15% of patients with Marfan syndrome have dissection at a size smaller than 5.0 cm.[13][19][20](Level of Evidence: C)"
"1. If one or more first-degree relatives of a patient with known thoracic aortic aneurysm and/or dissection are found to have thoracic aortic dilatation, aneurysm, or dissection, then imaging of second-degree relatives is reasonable.[21](Level of Evidence: B)"
Takayasu Arteritis and Giant Cell Arteritis (DO NOT EDIT)[1]
"1. Selection of a specific imaging modality to identify or exclude aortic dissection should be based on patient variables and institutional capabilities, including immediate availability. (Level of Evidence: C)"
"3. When following patients with imaging, utilization of the same modality at the same institution is reasonable, so that similar images of matching anatomic segments can be compared side by side. (Level of Evidence: C)"
"5. Surveillance imaging similar to classic aortic dissection is reasonable in patients with intramural hematoma. (Level of Evidence: C)"
References
↑ 1.01.11.21.31.41.51.61.71.8Hiratzka LF, Bakris GL, Beckman JA; et al. (2010). "2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine". Circulation. 121 (13): e266–369. doi:10.1161/CIR.0b013e3181d4739e. PMID20233780. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Yoshida S, Akiba H, Tamakawa M; et al. (2003). "Thoracic involvement of type A aortic dissection and intramural hematoma: diagnostic accuracy--comparison of emergency helical CT and surgical findings". Radiology. 228 (2): 430–5. doi:10.1148/radiol.2282012162. PMID12819341. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Sommer T, Fehske W, Holzknecht N; et al. (1996). "Aortic dissection: a comparative study of diagnosis with spiral CT, multiplanar transesophageal echocardiography, and MR imaging". Radiology. 199 (2): 347–52. PMID8668776. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Zeman RK, Berman PM, Silverman PM; et al. (1995). "Diagnosis of aortic dissection: value of helical CT with multiplanar reformation and three-dimensional rendering". AJR Am J Roentgenol. 164 (6): 1375–80. PMID7754876. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Shiga T, Wajima Z, Apfel CC, Inoue T, Ohe Y (2006). "Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis". Arch. Intern. Med. 166 (13): 1350–6. doi:10.1001/archinte.166.13.1350. PMID16831999. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Nienaber CA, von Kodolitsch Y, Nicolas V; et al. (1993). "The diagnosis of thoracic aortic dissection by noninvasive imaging procedures". N. Engl. J. Med. 328 (1): 1–9. doi:10.1056/NEJM199301073280101. PMID8416265. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Erbel R, Engberding R, Daniel W, Roelandt J, Visser C, Rennollet H (1989). "Echocardiography in diagnosis of aortic dissection". Lancet. 1 (8636): 457–61. PMID2563839. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Börner N, Erbel R, Braun B, Henkel B, Meyer J, Rumpelt J (1984). "Diagnosis of aortic dissection by transesophageal echocardiography". Am. J. Cardiol. 54 (8): 1157–8. PMID6496346. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Amis ES, Butler PF, Applegate KE; et al. (2007). "American College of Radiology white paper on radiation dose in medicine". J Am Coll Radiol. 4 (5): 272–84. doi:10.1016/j.jacr.2007.03.002. PMID17467608. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Brenner DJ, Hall EJ (2007). "Computed tomography--an increasing source of radiation exposure". N. Engl. J. Med. 357 (22): 2277–84. doi:10.1056/NEJMra072149. PMID18046031. Unknown parameter |month= ignored (help)
↑Svensson LG, Crawford ES, Coselli JS, Safi HJ, Hess KR (1989). "Impact of cardiovascular operation on survival in the Marfan patient". Circulation. 80 (3 Pt 1): I233–42. PMID2766531. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑ 13.013.1Svensson LG, Blackstone EH, Feng J; et al. (2007). "Are Marfan syndrome and marfanoid patients distinguishable on long-term follow-up?". Ann. Thorac. Surg. 83 (3): 1067–74. doi:10.1016/j.athoracsur.2006.10.062. PMID17307461. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Zhu L, Vranckx R, Khau Van Kien P; et al. (2006). "Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus". Nat. Genet. 38 (3): 343–9. doi:10.1038/ng1721. PMID16444274. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑ 16.016.1Loeys BL, Schwarze U, Holm T; et al. (2006). "Aneurysm syndromes caused by mutations in the TGF-beta receptor". N. Engl. J. Med. 355 (8): 788–98. doi:10.1056/NEJMoa055695. PMID16928994. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Williams JA, Loeys BL, Nwakanma LU; et al. (2007). "Early surgical experience with Loeys-Dietz: a new syndrome of aggressive thoracic aortic aneurysm disease". Ann. Thorac. Surg. 83 (2): S757–63, discussion S785–90. doi:10.1016/j.athoracsur.2006.10.091. PMID17257922. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Gott VL, Greene PS, Alejo DE; et al. (1999). "Replacement of the aortic root in patients with Marfan's syndrome". N. Engl. J. Med. 340 (17): 1307–13. doi:10.1056/NEJM199904293401702. PMID10219065. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Svensson LG, Khitin L (2002). "Aortic cross-sectional area/height ratio timing of aortic surgery in asymptomatic patients with Marfan syndrome". J. Thorac. Cardiovasc. Surg. 123 (2): 360–1. PMID11828302. Unknown parameter |month= ignored (help)
↑ 21.021.1Albornoz G, Coady MA, Roberts M; et al. (2006). "Familial thoracic aortic aneurysms and dissections--incidence, modes of inheritance, and phenotypic patterns". Ann. Thorac. Surg. 82 (4): 1400–5. doi:10.1016/j.athoracsur.2006.04.098. PMID16996941. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Coady MA, Davies RR, Roberts M; et al. (1999). "Familial patterns of thoracic aortic aneurysms". Arch Surg. 134 (4): 361–7. PMID10199307. Unknown parameter |month= ignored (help)CS1 maint: Explicit use of et al. (link) CS1 maint: Multiple names: authors list (link)
↑Svensson LG, Labib SB, Eisenhauer AC, Butterly JR (1999). "Intimal tear without hematoma: an important variant of aortic dissection that can elude current imaging techniques". Circulation. 99 (10): 1331–6. PMID10077517. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Borger MA, David TE (2005). "Management of the valve and ascending aorta in adults with bicuspid aortic valve disease". Semin. Thorac. Cardiovasc. Surg. 17 (2): 143–7. doi:10.1053/j.semtcvs.2005.02.005. PMID16087084.
↑Svensson LG, Blackstone EH, Cosgrove DM (2003). "Surgical options in young adults with aortic valve disease". Curr Probl Cardiol. 28 (7): 417–80. doi:10.1016/j.cpcardiol.2003.08.002. PMID14647130. Unknown parameter |month= ignored (help)CS1 maint: Multiple names: authors list (link)
↑Svensson LG (2008). "Aortic valve stenosis and regurgitation: an overview of management". J Cardiovasc Surg (Torino). 49 (2): 297–303. PMID18431353. Unknown parameter |month= ignored (help)