Isoelectric focusing
Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [1] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.
Overview
Isoelectric focusing, also known as electrofocusing, is a technique for separating different molecules by their electric charge differences. It is a type of zone electrophoresis, usually performed in a gel, that takes advantage of the fact that a molecule's charge changes with the pH of its surroundings.
Molecules to be focused are distributed over a medium that has a pH gradient (usually created by aliphatic ampholytes). An electric current is passed through the medium, creating a "positive" anode and "negative" cathode end. Negatively charged molecules migrate through the pH gradient in the medium toward the "positive" end while positively charged molecules move toward the "negative" end. As a particle moves towards the pole opposite of its charge it moves through the changing pH gradient until it reaches a point in which the pH of that molecules isoelectric point is reached. At this point the molecule no longer has a net electric charge (due to the protonation or deprotonation of the associated functional groups) and as such will not proceed any further within the gel. The gradient is initially established before adding the particles of interest by first subjecting a solution of small molecules such as polyampholytes with varying pI values to electrophoresis.
The method is applied particularly often in the study of proteins, which separate based on their relative content of acidic and basic residues, whose value is represented by the pI. Proteins are introduced into a gel composed of polyacrylamide, starch, or agarose where a pH gradient has been established. Gels with large pores are usually used in this process to eliminate any "sieving" effects, or artifacts in the pI caused by differing migration rates for proteins of differing sizes. Isoelectric focusing can resolve proteins that differ in pI value by as little as 0.01.[1] Isoelectric focusing is the first step in two-dimensional gel electrophoresis, in which proteins are first separated by their pI and then further separated by molecular weight through SDS-PAGE.
References
- ↑ Stryer, Lubert: "Biochemie", page 50. Spektrum Akademischer Verlag, 1996 (German)
See also
- Alpha 1-antitrypsin where electrofocusing is used for diagnosis of the enzyme phenotype.
External links
- Isoelectric Focusing Details
- Isoelectric Focusing Project (read boxes on right for description of technique/apparatus.)