Transfusion reaction
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [2] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.
Overview
In medicine, a transfusion reaction is any adverse event which occurs because of a blood transfusion. These events can take the form of an allergic reaction, a transfusion-related infection, hemolysis related to an incompatible blood type, or an alteration of the immune system related to the transfusion. The risk of a transfusion reaction must always be balanced against the anticipated benefit of a blood transfusion.
Types of transfusion reactions
- Febrile non-hemolytic transfusion reaction. This is the most common adverse reaction to a blood transfusion. Symptoms include fever and dyspnea 1 to 6 hours after receiving the transfusion. Such reactions are clinically benign, causing no lasting side effects or problems, but are unpleasant via a blood transfusion is estimated, as of 2006, at 1 per 2 million units transfused. Bacterial infection is a much more common problem (see below).
- Bacterial infection. Blood products can provide an excellent medium for bacterial growth, and can become contaminated after collection while they are being stored. The risk is highest with platelet transfusion, since platelets must be stored near room temperature and cannot be refrigerated. The risk of severe bacterial infection and sepsis is estimated (as of 2001) at about 1 in 50,000 platelet transfusions, and 1 in 500,000 red blood cell transfusions.[1]
- Acute hemolytic reaction. This is a medical emergency resulting from rapid destruction (hemolysis) of the donor red blood cells by host antibodies. The most common cause is clerical error (i.e. the wrong unit of blood being given to the wrong patient). The symptoms are fever and chills, sometimes with back pain and pink or red urine (hemoglobinuria). The major complication is that hemoglobin released by the destruction of red blood cells can cause acute renal failure.
- Anaphylactic reaction. An anaphylactic (or severe allergic) reaction can occur at a rate of 1 per 30,000-50,000 transfusions. These reactions are most common in people with selective IgA deficiency (although IgA deficiency is often asymptomatic, and people may not know they have it until an anaphylactic reaction occurs). An anaphylactic reaction is a medical emergency, requiring prompt treatment, and may be life-threatening.
- Transfusion-associated acute lung injury (TRALI). TRALI is a syndrome of acute respiratory distress, often associated with fever, non-cardiogenic pulmonary edema, and hypotension. It may occur as often as 1 in 2000 transfusions.[2] Symptoms can range from mild to life-threatening, but most patients recover fully within 96 hours, and the mortality rate from this condition is less than 10%.[3]
- Volume overload. Patients with impaired cardiac function (eg congestive heart failure) can become volume-overloaded as a result of blood transfusion, leading to edema, dyspnea (shortness of breath), and orthopnea (shortness of breath while lying flat). This is sometimes called TACO, or Transfusion Associated Circulatory Overload.
- Iron overload. Each transfused unit of red blood cells contains approximately 250 mg of elemental iron. Since elimination pathways for iron are limited, a person receiving numerous red blood cell transfusions can develop iron overload, which can in turn damage the liver, heart, kidneys, and pancreas. The threshold at which iron overload becomes significant is somewhat unclear, but is likely around 12-20 units of red blood cells transfused.
- Transfusion-associated graft-vs-host disease (GVHD). GVHD refers to an immune attack by transfused cells against the recipient. This is a common complication of stem cell transplantation, but an exceedingly rare complication of blood transfusion. It occurs only in severely immunosuppressed patients, primarily those with congenital immune deficiencies or hematologic malignancies who are receiving intensive chemotherapy. When GVHD occurs in association with blood transfusion, it is almost uniformly fatal.[4] Transfusion-associated GVHD can be prevented by irradiating the blood products prior to transfusion.
Treatment of transfusion reactions
The most important step in treating a presumed transfusion reaction is to stop the transfusion immediately (saving the remaining blood and IV tubing for testing) and to provide supportive care to the patient. More specific treatments depend on the nature and presumed cause of the transfusion reaction. Most hospitals and medical centers have transfusion reaction protocols, which specify testing of the blood product and patient for hemolysis, bacterial contamination, etc.
See also
External links
- ICD-10 Chapter T: World Health Organisation classification - Complications following infusion, transfusion and therapeutic injection
References
- ↑ Bacterial contamination of platelet concentrates: incidence, significance, and prevention. Blajchman MA; Goldman M. Semin Hematol 2001 Oct;38(4 Suppl 11):20-6.
- ↑ The association of biologically active lipids with the development of transfusion-related acute lung injury: a retrospective study. Silliman CC; Paterson AJ; Dickey WO; Stroneck DF; Popovsky MA; Caldwell SA; Ambruso DR. Transfusion 1997 Jul;37(7):719-26.
- ↑ Transfusion-related acute lung injury: a neglected, serious complication of hemotherapy. Popovsky MA; Chaplin HC Jr; Moore SB. Transfusion 1992 Jul-Aug;32(6):589-92.
- ↑ Transfusion-associated graft-versus-host disease and blood irradiation. Linden JV; Pisciotto PT. Transfus Med Rev 1992 Apr;6(2):116-23.