Hemoglobinopathy

Revision as of 15:52, 29 July 2011 by Lakshmi Gopalakrishnan (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Search infobox Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [2] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.

Overview

Hemoglobinopathy is a kind of genetic defect that results in abnormal structure of one of the globin chains of the hemoglobin molecule. Most common hemoglobinopathies include sickle-cell disease.

Symptoms

Most clinically significant hemoglobinopathies cause mild to acute anemia, in rare cases hemolytic anemia. Symptoms vary for the different diseases: in sickle cell disease the red blood cells tend to assume a different shape under anaerobic conditions, leading to organ damage and circulatory problems, while in thalassemia there is ineffective production of red blood cells (erythropoiesis).

Migration patterns

Migration patterns (Alkaline Electrophoresis)

In general on alkaline electrophoresis in order of increasing mobility are hemoglobins A2, E=O=C, G=D=S=Lepore, F, A, K, J, Bart's, N, I, and H.

In general a sickling test (sodium bisulfite) is performed on abnormal hemoglobins migrating in the S location to see if the red cells precipitate in solution.

Migration patterns (Acid Electrophoresis)

In general on acid electrophoresis in order of increasing mobility are hemoglobins F, A=D=G=E=O=Lepore, S, and C.

This is how abnormal Hgb variants are isolated and identified using these two methods. For example a Hgb G-Philadelphia would migrate with S on alkaline electrophoresis and would migrate with A on acid electrophoresis, respectively.

Common variants

  • Hb S
  • Hb C
  • Hb E
  • Hb D-Punjab
  • Hb O-Arab
  • Hb G-Philadelphia
  • Hb Hasharon
  • Hb Korle-Bu
  • Hb Lepore
  • Hb M

Hemoglobinopathy and evolution

Some hemoglobinopathies (and also related diseases like glucose-6-phosphate dehydrogenase deficiency) seem to have given an evolutionary benefit, especially to heterozygotes, in areas where malaria is endemic. Malaria parasites live inside red blood cells, but subtly disturb normal cellular function. In patients predisposed for rapid clearance of red blood cells, this may lead to early destruction of cells infected with the parasite and increased chance of survival for the carrier of the trait. de:Hämoglobinopathie nl:Hemoglobinopathie

Template:Hematology

Template:SIB

Template:WikiDoc Sources