Pulmonary embolism D-dimer
Pulmonary Embolism Microchapters |
Diagnosis |
---|
Pulmonary Embolism Assessment of Probability of Subsequent VTE and Risk Scores |
Treatment |
Follow-Up |
Special Scenario |
Trials |
Case Studies |
Pulmonary embolism D-dimer On the Web |
Risk calculators and risk factors for Pulmonary embolism D-dimer |
Editor(s)-In-Chief: The APEX Trial Investigators, C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]
Overview
D-dimers
This is formed by the degradation of fibrin clot. Almost all patients with PE have some endogenous fibrinolysis, and therefore have elevated levels of D-dimer.
- The negative predictive value (when done by ELISA) is 91% – 94% .
- Many other diseases are associated with a mild degree of fibrinolysis, and hence an elevated D-dimer is not specific for pulmonary embolism. Disease with elevated levels of D-dimer are:
D-Dimer levels are elevated in other medical conditions such as:
- Pregnancy
- After surgery
- Hospitalized patient.[1] Thus, most hospitalized patients should not undergo D-dimer testing if PE is suspected.[2]
Patients who are hemodynamically stable, but have a high clinical probability or those having a high d-dimer level should undergo multidetector CT.[3] The following table depicts the incidences of thromboembolic events in hemodynamicaly stable patients.
Condition | Incidence of thromboembolic event (%) |
---|---|
Patients not receiving anticoagulation and with negative CT findings. | 1.5%[4][3] |
Patients with High d-dimer level | 1.5% |
Patients with Normal d-dimer level | 0.5%[4] |
In low-to-moderate suspicion of PE, a normal D-dimer level (shown in a blood test) is enough to exclude the possibility of thrombotic PE.[5] In patients with High clinical probability, the use of the d-dimer assay is of limited value.[6]
The following flowchart summarize the role of D-dimer:
Patients with suspection of Pulmonary embolism | |||||||||||||||||||||||
Clinically Low or Moderate | Clinically High | ||||||||||||||||||||||
D-Dimer Positive | |||||||||||||||||||||||
D-Dimer Negative | |||||||||||||||||||||||
No treatment | Further Tests | Further Tests | |||||||||||||||||||||
A new D-Dimer (DDMR) analyzer has shown to have higher accuracy in excluding patients with non-high clinical pre-test probability.[7]
ESC Guideline Recommendations [8]
Suspected Non High-risk PE Patients
“ |
Class I1. Plasma D-dimer measurement is recommended in emergency department patients to reduce the need for unnecessary imaging and irradiation, preferably using a highly sensitive assay. (Level of Evidence: A) |
” |
Guideline Resources
Guidelines on the diagnosis and management of acute pulmonary embolism. The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology[8]
References
- ↑ Bruinstroop E, van de Ree MA, Huisman MV (2009). "The use of D-dimer in specific clinical conditions: a narrative review". Eur J Intern Med. 20 (5): 441–6. doi:10.1016/j.ejim.2008.12.004. PMID 19712840.
- ↑ Agnelli G, Becattini C (2010). "Acute pulmonary embolism". N Engl J Med. 363 (3): 266–74. doi:10.1056/NEJMra0907731. PMID 20592294.
- ↑ 3.0 3.1 van Belle A, Büller HR, Huisman MV, Huisman PM, Kaasjager K, Kamphuisen PW; et al. (2006). "Effectiveness of managing suspected pulmonary embolism using an algorithm combining clinical probability, D-dimer testing, and computed tomography". JAMA. 295 (2): 172–9. doi:10.1001/jama.295.2.172. PMID 16403929.
- ↑ 4.0 4.1 Perrier A, Roy PM, Sanchez O, Le Gal G, Meyer G, Gourdier AL; et al. (2005). "Multidetector-row computed tomography in suspected pulmonary embolism". N Engl J Med. 352 (17): 1760–8. doi:10.1056/NEJMoa042905. PMID 15858185. in: J Fam Pract. 2005 Aug;54(8):653, 657
- ↑ Bounameaux H, de Moerloose P, Perrier A, Reber G (1994). "Plasma measurement of D-dimer as diagnostic aid in suspected venous thromboembolism: an overview". Thromb. Haemost. 71 (1): 1–6. PMID 8165626.
- ↑ Gupta RT, Kakarla RK, Kirshenbaum KJ, Tapson VF (2009). "D-dimers and efficacy of clinical risk estimation algorithms: sensitivity in evaluation of acute pulmonary embolism". AJR Am J Roentgenol. 193 (2): 425–30. doi:10.2214/AJR.08.2186. PMID 19620439.
- ↑ Gosselin RC, Wu JR, Kottke-Marchant K, Peetz D, Christie DJ, Muth H; et al. (2012). "Evaluation of the Stratus® CS Acute Care™ D-dimer assay (DDMR) using the Stratus® CS STAT Fluorometric Analyzer: A prospective multisite study for exclusion of pulmonary embolism and deep vein thrombosis". Thromb Res. doi:10.1016/j.thromres.2011.12.015. PMID 22245223.
- ↑ 8.0 8.1 Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, Bengel F, Brady AJ, Ferreira D, Janssens U, Klepetko W, Mayer E, Remy-Jardin M, Bassand JP (2008). "Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)". Eur. Heart J. 29 (18): 2276–315. doi:10.1093/eurheartj/ehn310. PMID 18757870. Retrieved 2011-12-07. Unknown parameter
|month=
ignored (help)