Disjoint

Revision as of 00:49, 9 August 2012 by WikiBot (talk | contribs) (Bot: Automated text replacement (-{{SIB}} + & -{{EH}} + & -{{EJ}} + & -{{Editor Help}} + & -{{Editor Join}} +))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


In mathematics, two sets are said to be disjoint if they have no element in common. For example, {1, 2, 3} and {4, 5, 6} are disjoint sets.

Explanation

Formally, two sets A and B are disjoint if their intersection is the empty set, i.e. if

<math>A\cap B = \varnothing.\,</math>

This definition extends to any collection of sets. A collection of sets is pairwise disjoint or mutually disjoint if any two distinct sets in the collection are disjoint.

Formally, let I be an index set, and for each i in I, let Ai be a set. Then the family of sets {Ai : iI} is pairwise disjoint if for any i and j in I with ij,

<math>A_i \cap A_j = \varnothing.\,</math>

For example, the collection of sets { {1}, {2}, {3}, ... } is pairwise disjoint. If {Ai} is a pairwise disjoint collection (containing at least two sets), then clearly its intersection is empty:

<math>\bigcap_{i\in I} A_i = \varnothing.\,</math>

However, the converse is not true: the intersection of the collection {{1, 2}, {2, 3}, {3, 1}} is empty, but the collection is not pairwise disjoint - in fact, there are no two disjoint sets in the collection.

A partition of a set X is any collection of non-empty subsets {Ai : iI} of X such that {Ai} are pairwise disjoint and

<math>\bigcup_{i\in I} A_i = X.\,</math>

See also

cs:Disjunktní množiny de:Disjunkt eo:Vikipedio:Projekto matematiko/Disaj aroj ko:서로소 (집합론) is:Sundurlæg mengi it:Disgiunzione he:קבוצות זרות nl:Disjunct nn:Disjunkt sl:Disjunktni množici fi:Erilliset joukot fiu-vro:Ütidse osalda hulgaq

Template:WH Template:WS