Ellingham diagram

Revision as of 02:11, 9 August 2012 by WikiBot (talk | contribs) (Bot: Automated text replacement (-{{SIB}} + & -{{EJ}} + & -{{EH}} + & -{{Editor Join}} + & -{{Editor Help}} +))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


In metallurgy, the Ellingham diagram is used to predict the equilibrium temperature between a metal, its oxide and oxygen, and by extension, reactions of a metal with sulphur, nitrogen and other non-metals. The diagrams are useful in attempting to predict the conditions under which a metal ore will be reduced to the metal.

Thermodynamics

Ellingham diagrams follow from the Second Law of Thermodynamics [ΔG = ΔH - TΔS] and are a particular graphical form of it. ΔG is the Gibbs Free Energy Change,ΔH is the Enthalpy Change and ΔS is the Entropy Change]


The Ellingham diagram plots the Gibbs free energy change (ΔG) for the oxidation reaction versus the temperature. In the temperature ranges commonly used, the metal and the oxide are in a condensed state (liquid or solid) with the oxygen gaseous, the reactions may be exothermic or endothermic, but the ΔG of the oxidation always becomes more negative with higher temperature, and thus the reaction becomes more probable statistically. At a sufficiently high temperature, the sign of ΔG may invert (becoming negative) and the oxide can spontaneously reduce to the metal.

As with any chemical reaction prediction based on purely energetic grounds the reaction may or may not take place spontaneously on kinetic grounds if one or more stages in the reaction pathway have very high Activation Energies EA.

If two metals are present, two equilibriums have to be considered, so that the metal with the more negative ΔG reduces, the other oxidizes.

In industrial processes, the reduction of metal oxides is obtained using carbon, which is available cheaply in reduced form (as coal).

Reducing agents

Moreover, when carbon reacts with oxygen it forms gaseous composts carbon monoxide and carbon dioxide, therefore the dynamics of its oxidation is different from that for metals: its oxidation has a more negative ΔG with higher temperatures. Using this property, reduction of metals may be performed as a double redox reaction at relatively low temperature.

External links

it:Diagramma di Ellingham fi:Ellinghamin diagrammi

Template:WH Template:WS