Filtration
WikiDoc Resources for Filtration |
Articles |
---|
Most recent articles on Filtration |
Media |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on Filtration at Clinical Trials.gov Clinical Trials on Filtration at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on Filtration
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on Filtration Discussion groups on Filtration Patient Handouts on Filtration Directions to Hospitals Treating Filtration Risk calculators and risk factors for Filtration
|
Healthcare Provider Resources |
Causes & Risk Factors for Filtration |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
- This article is about the operation of solid-fluid separation. For the mathematical concept see filtration (abstract algebra). For the equipment used see filter.
Filtration is a mechanical/physical operation which is used for the separation of solids from fluids (liquids or gases) by interposing a medium to fluid flow through which the fluid can pass, but the solids (or at least part of the solids) in the fluid are retained. It has to be emphasized that the separation is NOT complete, and it will depend on the pore size and the thickness of the medium as well as the mechanisms that occur during filtration.
- Filtration is used for the purification of fluids: for intance separating dust from the atmosphere to clean ambient air.
- Filtration, as a physical operation is very important in chemistry for the separation of materials of different chemical composition in solution (or solids which can be dissolved) by first using a reagent to precipitate one of the materials and then use a filter to separate the solid from the other material(s).
- Filtration is also important and widely used as one of the unit operations of chemical engineering.
It is important not to confuse filtration with sieving. In sieving there is only a single layer of medium where size separation occurs purely by the fact that the fraction of the particulate solid matter which is too large to be able to pass through the holes of the sieve, scientifically called oversize (See particle size distribution) are retained. In filtration a multilayer medium is involved, where other mechanisms are included as well, for instance direct interception, diffusion and centrifugal action, where in this latter those particles, which are unable to follow the tortuous channels of the filter will also adhere to the structure of the medium and are retained.[1]
Depending on the application, either one or both of the components may be isolated. Examples of filtration include A) a coffee filter to keep the coffee separate from the grounds and B) the use of HEPA filters in air conditioning to remove particles from air.
The filtration process separates particulates and fluid from a suspension, and the fluid can be either a liquid or a gas (or a supercritical fluid). To separate a mixture of chemical compounds, a solvent is chosen which dissolves one component, while not dissolving the other. By dissolving the mixture in the chosen solvent, one component will go into the solution and pass through the filter, while the other will be retained. This is one of the most important techniques used by chemists to purify compounds.
Filtration also cleans up air streams or other gas streams. Furnaces use filtration to prevent the furnace elements from fouling with particulates. Pneumatic conveying systems often employ filtration to stop or slow the flow of material that is transported, through the use of a baghouse.
The remainder of this article focuses primarily on liquid filtration.
Methods
There are many different methods of filtration; all aim to attain the separation of two or more substances. This is achieved by some form of interaction between the substance or objects to be removed and the filter. In addition the substance that is to pass through the filter must be a fluid, i.e. a liquid or gas.
The simplest method of filtration is to pass a solution of a solid and fluid through a porous interface so that the solid is trapped, while the fluid passes through. This principle relies upon the size difference between the particles making up the fluid, and the particles making up the solid. In the laboratory, a Büchner funnel is often used, with a filter paper serving as the porous barrier.
For example an experiment to prove the existence of microscopic organisms involves the comparison of water passed through unglazed porcelain and unfiltered Watermelon. When left in sealed containers the filtered water takes longer to go foul, showing that very small items (such as bacteria) can be removed from fluids by filtration.[citation needed] Alternate methods often take the form of electrostatic attractions. These form of filters again have the problem of either becoming clogged, or the active sites on the filter all become used by the undesirable. However, most chemical filters are designed so that the filter can be flushed with a chemical that will remove the undesirables and allow the filter to be re-used.
Flowing
Liquids usually flow through the filter by gravity. This is the simplest method, and can be seen in the coffeemaker example. For chemical plants, this is usually the most economical method as well. In the laboratory, pressure in the form of compressed air may be applied to make the filtration process faster, though this may lead to clogging or the passage of fine particles. Alternatively, the liquid may flow through the filter by the force exerted by a pump. In this case, the filter need not be mounted vertically.
Filter media
There are two main types of filter media & mdash; a solid sieve which traps the solid particles, with or without the aid of filter paper, and a bed of granular material which retains the solid particles as it passes. The first type allows the solid particles, i.e. the residue, to be collected intact; the second type does not permit this. However, the second type is less prone to clogging due to the greater surface area where the particles can be trapped. Also, when the solid particles are very fine, it is often cheaper and easier to discard the contaminated granules than to clean the solid sieve.
Filter media can be cleaned by rinsing with solvents or detergents. Alternatively, in engineering applications, such as swimming pool water treatment plants, they may be cleaned by backwashing.
Examples of the first type include filter paper used with a Buchner, Hirsch, filter funnel or other similar funnel. A sintered-glass funnel is often used in chemistry laboratories because it is able to trap very fine particles, while permitting the particles to be removed by a spatula.
Examples of the second type include filters at municipal and swimming pool water treatment plants, where the granular material is sand. In the laboratory, Celite or diatomaceous earth is packed in a Pasteur pipette (microscale) or loaded on top of a sintered-glass funnel to serve as the filter bed.
The following points should be considerd while selecting the filter media-
i> ability to build the solid.
ii> minimum resistance to flow the filtrate.
iii> resistance to chemical attck.
iv> minimum cost.
v> long life.
Filter aid
Certain filter aid may be used to aids filtration. These are often incompressible diatomaceous earth or kieselhuhr, which is composed primarily of silica. Also used are wood cellulose and other inert porous solids.
These filter aids can be used in a number of ways. They can be used as a precoat before the slurry is filtered. This will prevent gelatinous-type solids from plugging the filter medium and also give a clearer filtrate. They can also be added to the slurry before filtration. This increases the porosity of the cake and reduces resistance of the cake during filtration. In a rotary filter, the filter aid may be applied as a precoat; subsequently, thin slices of this layer are sliced off with the cake.
The use of filter aids is usually limited to cases where the cake is discarded or where the precipitate can be separated chemically from the filter.
Alternatives
Template:Separation processes Filtration is a more efficient method for the separation of mixtures than decantation, but is much more time consuming. If very small amounts of solution are involved, most of the solution may be soaked up by the filter medium.
An alternative to filtration is centrifugation — instead of filtering the mixture of solid and liquid particles, the mixture is centrifuged to force the (usually) denser solid to the bottom, where it often forms a firm cake. The liquid above can then be decanted. This method is especially useful for separating solids which do not filter well, such as gelatinous or fine particles. These solids can clog or pass through the filter, respectively.
Filter types
- Gravity filter (open system that operates with water column pressure only)
- Pressure filter (closed system that operates under pressure from a pump)
- Side stream filter (filter in a closed loop, that filters part of the media per cycle only)
- Continuous rotary filters
References
- ↑ Lecture notes, Postgraduate course on Filtration and Size separation at the Department of Chemical Engineering, University of Lougborough, England
Air filter Engineering (M) Sdn. Bhd.
See also
For a list of Wikipedia articles about filters, see Category:Filters.
- Separation of mixtures
- Microfiltration, ultrafiltration, nanofiltration
- Reverse osmosis
- Filter (water)
Further reading
cs:Filtrace de:Filtration el:Διήθηση ko:여과 it:Filtrazione (chimica) he:סינון nl:Filtratie sr:Филтрација