Long QT Syndrome classification

Jump to navigation Jump to search


Long QT Syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Long QT Syndrome from other Diseases

Epidemiology and Demographics

Risk Stratification

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Genetic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Case Studies

Case #1

Long QT Syndrome classification On the Web

Most recent articles

Most cited articles

Review articles

Programs

slides

[1]

American Roentgen Ray Society Images of Long QT Syndrome classification

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

on Long QT Syndrome classification

CDC onLong QT Syndrome classification

QT Syndrome classification in the news

on Long QT Syndrome classification

Directions to Hospitals Treating Long QT Syndrome

Risk calculators and risk factors for Long QT Syndrome classification

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [2]

Overview

Classification

The two most common types of LQTS are genetic and drug-induced. Genetic LQTS can arise from mutation to one of several genes. Following is a list of the most common mutations:

Type OMIM Mutation Notes
LQT1 192500 alpha subunit of the slow delayed rectifier potassium channel (KvLQT1 or KCNQ1) The current through the heteromeric channel (KvLQT1 + minK) is known as IKs. These mutations often cause LQT by reducing the amount of repolarizing current that is required to terminate the action potential, leading to an increase in the action potential duration (APD). These mutations tend to be the most common yet least severe.
LQT2 152427 alpha subunit of the rapid delayed rectifier potassium channel (HERG + MiRP1) Current through this channel is known as IKr. This phenotype is also probably caused by a reduction in repolarizing current.
LQT3 603830 alpha subunit of the sodium channel (SCN5A) Current through this channel is commonly referred to as INa. Depolarizing current through the channel late in the action potential is thought to prolong APD. The late current is due to failure of the channel to remain inactivated and hence enter a bursting mode in which significant current can enter when it should not. These mutations are more lethal but less common.
LQT4 600919 anchor protein Ankyrin B LQT4 is very rare. Ankyrin B anchors the ion channels in the cell.
LQT5 176261 beta subunit MinK (or KCNE1) which coassembles withKvLQT1 -
LQT6 603796 beta subunit MiRP1 (or KCNE2) which coassembles with HERG -
LQT7 170390 potassium channel KCNJ2 (or Kir2.1) The current through this channel and KCNJ12 (Kir2.2) is called IK1. LQT7 leads to Andersen-Tawil syndrome.
LQT8 601005 alpha subunit of the calcium channel Cav1.2 encoded by the gene CACNA1c. Leads to Timothy's syndrome.
LQT9 Caveolin 3
LQT10 SCN4B

Drug induced LQT is usually a result of treatment by anti-arrhythmic drugs such as amiodarone or a number of other drugs that have been reported to cause this problem (e.g. cisapride). Someanti-psychotic drugs, such as Haloperidol and Ziprasidone, have a prolonged QT interval as a rare side effect. Genetic mutations may make one more susceptible to drug induced LQT.

References

Template:WH

Template:WS